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Chapter 8

Parallel drains

In areas where natural drainage is inadequate, irrigation will cause the
water table to rise progressively until the land becomes water logged. To
improve the drainage, parallel drains can be installed. These may take the
form of drainage canals or of tile drains laid in a trench and back filled.
The latter arrangement has the advantage that the installation of drains does
not take any land out of production.

First approximation solution

A solution of the differential equation 2-2

32h _ 9h
a——.

ax2 et

Subject to the conditions

h

0 when x =0 for t >0

h

0 when x=L for t >0
h=H when t =0 for 0 <x <L
is

-n272 (&4
L2

n=c
_ 4H e . nwXx
h == Y - sin (== (8-1)
n=1,3,5..
A cross section normal to the drains is shown in figure 8-1. When x = %
this expression takes the form
nZn2 ()
n=e° L
_ 4H e . nmw
h, = — Y ———— sin () (8-2)

n=1,3,5...
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Fig. 8-1 Cross section normal to the line of drains.

Values of this function are listed in Table 10. These values find use in the
technically important task of selecting a drain spacing to fit a specified
set of field conditions. This is because the most difficult point to drain
is midway between the drains. If this point can be drained then every other
point will be drained also.

The flow to a drain from one side is

e -nZq
ka (2 =AY e b (8-3)
x=0 n=1,3,5...

z(at)
2

It may be noted in passing that this function has a singularity at t = 0.
This value must be disregarded as the infinite gradient obtained from the
above formula conflicts with the requirement that, for validity, the gradient
must be small compared to unity. It will be shown later that there is a
local resistance due to the convergence of the flow approaching a tile drain
which limits the flow rate to a finite value.

Another quantity of importance is the fractional part of the drainable

volume remaining at the time t . This is obtained from the relation
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. ()
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p=_J =__z A (8-4)
AL w2 n<1,3,5...  n?
0
Values of p are obtainable from Table 11.

Application of Werner's method

The first approximation solution is also a solution of Werner's
differential equation. The boundary and initial conditions are also appro-
priate but since h, is measured from the barrier the case represented is one

where the drain is on the barrier. Then

. ( )
n=w
£/ e sin (21 (8-5)
n=1,3,5...

The development of Boussinesq

A transient state drainage treatment has been contributed by J. Boussinesq
(Boussinesq 1904). He used concepts very similar to those employed by Dupuit
in that he assumed the surface gradient to apply throughout the saturated

depth. In our notation the condition of continuity would take the form

ah2

at

th

(Khz X 7% )

= V (8_6)

The development applies where the drains are on the barrier at a distance L
apart. The distance x is measured from one of the drains toward the other.
The drainable depth h2 has the value H at x = %— when the time t = 0.
Let
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h
U =2

H

X
£= T
n o= B

VL2

Then the differential equation takes the form

3U, _ U
U 5D = 3y (8-7)

3_
13

A possible type of solution is

Uu = WY

Where W is a function of & only and Y is a function of n only.
Substitution of this product into the differential equation permits a separa-

tion of the variables and yields two ordinary differential equations one in

W and the other in Y . In the case of Y the relation is
Ly
y2 dn

And a solution satisfying the conditions Y =1 when n =0 is

1

Y = Gl

The differential equation for W is of the nonlinear form

2 2
-d—w— + -‘]v %‘g—) = -C
dg?
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This can be reduced to a first order differential equation by the substitutions

. _ 2 e
dEz dw

After substitution the above differential equation becomes

2
dp , p% _ _
Pawtw c

Where it may be noted that W has now become the independent variable. A

further substitution

reduces it to the linear form

A solution is
2 _ 2CW3
vW = =< +C2
or
2 2CW C2
A
w2
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By integration subject to the condition that W =0 when £ =0 .

= [& (8-8)

When £ = %- W=1 then

J WdW

0 Vi-ws

The integral of this relation can be evaluated with the aid of the Beta and

Gamma functions (Osgood 1933, p. 485). The evaluation is

1 1. .2
rx) Iz
Waw 27 3T | .86237
7
0 Vv1-w3 3 (g

then
2 2C _
C = (6) (0.86237)< = 4.46209 3 = 1.72474

The following table is reproduced through the courtesy of Mr. W. T. Moody.

£ ' W
0.0 0.0
0.005 0.412
0.10 0.575
0.15 0.692
0.20 0.782
0.25 0.853
0.30 0.908
0.35 0.949
0.40 0.978
0.45 0.994
0.50 1.000
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Finally

h W
no_ (8-9)
B 406 MY 4

VL2

This development is of value because it gives indications as to what drainage
performance is to be expected when the drains are near the barrier. The first
approximation solution gives little guidance in such cases. It may be noted
that the initial condition of a uniform drainable depth is not met by the
Boussinesq development. It is interesting to note also that the pattern of
decrease is not of a descending exponential type but here takes an algebraic
form.

The Method of Brooks

A second approximation solution which remains valid when the drainable
depth is not negligibly small compared to the saturated depth below the
drains was obtained by Brooks 1963 by application of the Pioncare, Lighthill,
Kuo method. Good results were obtained where drainable depth were as great
as the saturated depth below the drains (H/d = 1.0). He also developed a
second approximation of the type described by Haushild and Kruse, 1962.

This formula can be- expressed in our notation as

e 3
h1 = -Da + Da + 2Dah0 + (ia (8-10)

Where Da= (d + gﬂ and ho comes from the first approximation. It is
obtained by computing the drainable depths on a nonlinear basis based upon
the flows obtained from the first approximation. The original paper may need

to be consulted. His origin is placed midway of the original drainable depth.
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The Method of Dumm, Tapp and Moody

This procedure was developed at the U.S. Bureau of Reclamation* to provide
an orderly approach to the problem of determining drain spacings. It was
recognized that there would be applications where the drainable depth would
not be small when compared to the barrier depth. It was also understood that
where the drainable depth is not small, in the above sense, the basic differen-
tial equation would be nonlinear in form which would mean that the principle
of superposition would not apply since the sum of two solutions is then not a
solution. As a consequence of this concept the superposition of uniform incre-
ments of drainable depth originating in uniform irrigations was abandoned in
favor of a drainage pattern representing observed configurations after a
number of irrigations had been made. Computations of drainage progress were
begun anew with each irrigation. The increment of added drainable depth being
added to the depth obtained from the preceding calculation. Computations are
made for the point midway between drains. The pattern chosen to represent the

data obtained from field observations is

h = 8H (%-- + - 2X (8-11)

A first approximation solution having this initial configuration is given as

~(2m+1)2 7225
LZ

192H miw [(2m+1)2 w2 - 8] e
17 5 m=0 (2m+1) 3

in (2m+1) 7x

s L

N (8-12)

At the point midway between drains this takes the form

*
See also USBR Eng. Monograph 31, 1966.
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n-1 —nznz(gEJ
D2 @-% e L
h, 192 B w2
G =— 1 - (8-13)
73 n=1,3,5 n

The initial drainable depth at the point midway between drains will here

be represented by Hm . The quantity Dm is expressible in the notation of

this volume as Dm = (d + Hm) and the aquifer constant is, correspondingly,
KD

o, = —vm-. The quantity q, Trepresents the rate of discharge to unit length

of drains from the space between two drains, or, if a single drain is con-
sidered, it represents the flow to unit length of drain, from both sides.
The quantity Wm represents the total flow to a unit length og drain from
both sides. The quantity m is given by the relation m = (a—%—ﬁ—a. The
quantity hm represents the drainable depth midway between drainscat the
time t .

For the case where the drains are on the barrier Boussinesq's solution
is used.

The intermediate case was treated by comparison with field tests. It

was found that the first approximation formula could be used providing an

aquifer constant of the form:

o = was used, where D =(d + gﬁ

Moody's development

A development by Moody 1966 does away with the need to make such a choice.
He used a computer to solve the nonlinear differential equation for a series of
drain positions ranging from a location near the water table to a location on

the barrier. He produced a table giving the maximum water table height, the
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discharge to the drains and the volume of water removed. This is in
dimensionless form and covers the entire range of possible drain positions be-
tween the water table and the barrier. The table is reproduced here as

Table 8-1 through the courtesy of Mr. W. T. Moody and of the U. S. Bureau

of Reclamation.*

The procedures described have been presented to the Profession in a
series of papers and much comment has been received both favorable and
unfavorable. The authors have made changes to meet the unfavorable comments
and have correlated their methods with field data from Australia, Canada and
the United States. The method has also been correlated with the results of
laboratory studies. There is also accumulating the experience with field
installations for which drain spacings have been selected by application of
the method. The experience with such installations is understood to have been
satisfactory. So far as this writer is aware, this method is the most care-
fully worked out, has received the most searching scrutiny, and has been more
extensively tested against laboratory and field data than any method proposed
for determining the spacing of drains which will, on the one hand, provide
satisfactory drainage and on the other hand avoid the excessive expenditures
incurred when the drains are spaced closer than necessary. Some valuable by-
products were obtained in the period of development, which has now covered
12 years and a study of the original papers is therefore recommended to those
who become seriously involved in the task of selecting drain spacings. One
of these is the need to account for the local resistance to flow near the

drain. This problem will be dealt with later in the text.

*
From unpublished USBR data. For a Graphical Presentation see ASCE Paper No. 4835,

by William T. Moody, on '"Nonlinear Differential Equation of Drain Spacing,"
Journal of the Irrigation and Drainage Division, June 1966, pp. 1-9, inclusive.
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Table 8-1--Continued

m=20

Ocmt hm Qn L

12 Fm K Dy Hpm
0. 1. 16.
0.001 0.9998 12.9402
0.002 0.9992 11.8719
0.003 0.9983 11.1239
0.004 0.9969 10.5388
0.005 0.9952 10.0560
0.006 0.9931 9.6447
0.007 0.9906 9.2866
0.008 0.9877 8.9698
0.009 0.9845 8.6862
0.010 0.9808 8.4298
0.020 0.9279 6.7266
0.030 0.8579 5.7562
0.040 0.7844 5.0790
0.050 0.7137 4.5459
0.060 0.6478 4.0957
0.070 0.5874 3.7014
0.080 0.5324 3.3496
0.090 0.4825 3.0332
0.100 0.4372 2.7475
0.200 10.1629 1.0238
0.300 0.0607 0.3816
0.400 0.0226 0.1422
0.500 0.0084 0.0530
0.600 0.0031 0.0198
0.700 0.0012 0.0074
0.800 0.0004 0.0027
0.900 0.0002 0.0010
1.000 0.0001 0.0004

Chap. 8

s et oty -t

V L Hm

0.0139

.0263
.0377
.0486
.0589

[e NNl

.0687
.0782
.0873
.0961

[l = B o B o ]

o

.1047

.1795
.2415
.2955
.3436

[Nl =o

.3867
.4257
.4609
.4928

(=N oo

o

.5217

.6963
.7613
.7856
.7946

[N NN

.7980
.7993
. 7997
.7999

(=N o o R )

0.8000
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Parallel drains from the Laplace standpoint*

Consider the expression

n=m
p = (d-y) + E An cosh (B%X) sin (2%59 . (8-14)

n=1
where p represents a pressure. It is measured in feet of water and represents
a departure from the pressures appropriate to a static state. This is a

solution of the Laplace differential equation.

ﬁ*.ﬁ:{]
3x2  ay?

which meets the requirement that %§-= 0 when y = 0. The coordinate y 1is
measured upward from the barrier. The quantities An are to be chosen to

meet the initial conditions that
p=H when y=d for 0<x<L

The term (d-y) represents the hydrostatic pressure which would be present if
the water table were at the level of the water surface maintained in the
drains. The quantity p Trepresents a pressure in feet of water and the terms
under the summation sign represent the additional pressures present when the
water table is above the level of the drains. The pressure p will be zero

when

m
0 = (d-y) + } An cosh (E%X) sin (2%50

This presentation follows closely that of the paper on '"Parallel Drains from
the Laplace Standpoint," by Robert E. Glover, which appeared in the Journal
of the American Water Resources Association, Vol. 8, No. 1, February 1972,
pp. 50-54 inclusive. The development is presented here through the courtesy
of the A.W.R.A.
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If the quantity n has an upper limit m , which implies a finite number of

terms in the series, and E%X is everywhere small compared to unity; then

cosh (B%Zd =1

m
B . NTX

Yo = d + % An sin (—i—a
This expression represents a water table profile. If a uniform increment of
depth H reaches the water table, due to deep percolation from a uniform
application of irrigation water, then the pressure imposed at drain level
by the water table profile can be represented initially by the expression

n=cw
By = 4y Lsin (275 . (8-15)

T n=1,3,5... O

If the series is terminated at the mth term then the expression can represent
approximately a uniform increment of depth H . The relationships considered
up to this point do not involve the element of time. This factor can now be
introduced.

After the increment is applied, water will flow to the drains and the
water table will begin to sink. The flows to each drain accounted for by

the individual terms of the series will be:

d d
9
K[ GD dy

0 0 0

nm nwy - . nmy, ,d
An K T I cosh (—TTJ dy An K sinh ( I )]0

n

. nwd
An K sinh (—E—J

1]

The volume above the line y =d is, approximately, for each term
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L L

= B nwd . nmx = L nmnd
S [ (y-d) dx = An cosh (—t—a J sin (—TTJ dx £ 2 An e cosh (—TTO
0

The continuity condition for each term is, since there is flow out at x =0

and at x = L

In this expression t represents time. By substitution:

dA
n 2LV nnd, _ . nnd
F F cosh (-—L—-) = 2 An K sinh (T)
or if
_ Knm nnd
B = o tanh (—L )
dAn
dtx TEA =0

This is a differential equation whose solution is:

Where the Bn quantities are new constants. Thenall of the requirements

described previously will be met to a close approximation if

n=m -Bt cosh (EEX)
~ 4H e . nwx
pE— ) sin (=) + (d-y) (8-16)
i n=1,3,5... n L cosh (E%éa

This expression remains an exact solution of equation 1.
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When
nnd nnd, . nnd
T <l tanh (=) ===
and with
é:omzﬂz Kd
B o = 5
L2 v
Then, approximately,
-n?r? ()
n=m L
he 4t & sin (&5 + (d-y)
n=1,3,5...

The formula derived from the Dupuit-Forchheimer idealization is then

recovered but with the important exception that here

o = = (8-17)

If the solution is limited to three terms and %¥-< 0.1 everywhere then the
Dupuit-Forchheimer and Laplace solutions become essentially identical in form
and an approximation to the initial condition is obtained which is close enough
for practical purposes. Since the higher ordered terms vanish rapidly it is
permissible to use Table 10 for computation of the remaining drainable depth
at x = L/2 except that here the aquifer constant must be of the form o = Kd/V .
Examples

Use of the first approximation solution and the Laplace type solution will
be illustrated by use of an example adapted from Dumm's 1964 paper. The given

data are:

Depth from ground surface to barrier 30 ft

Depth from ground surface to drain 8 ft
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Drainable depth produced by an irrigation 0.46 ft

Permeability K = 10 ft/day
Effective voids ratio 0.18
Drain spacing L = 1450 ft

We will compute the remaining drainable depth at the point midway between drains
at the end of successive seven day periods. Values for three months, six
months, and one year are added. The differences between the values obtained

by the first approximation and the Laplace type solution are due only to the
difference in the o values. These differences are small. The drainable
depth at the center does not respond immediately to the action of the drains.
The part remaining, however, responds very quickly due to drainage taking place
in the immediate neighborhood of the drain.

Computation by first approximation

K =10 ft/day D = (d + 53 = (22 + 2% = 22.23 £t
KD
~ _ a _ (10) (22.23) _ ft2 ~
V=018 a=~— = B = 1235 o— L = 1450 ft
e o125 5 0005874 H%f' H = 0.46 ft
L2 14502 Y
Time gg E_ h
Days L2 H c P Remarks
h
0 0 1.000 0.460  1.000  Values of T%‘ can be
7  0.004112 1.000 0.460 0.855  read from Table 10.
14  0.008224  1.000 0.460  0.795  Values of p can be
21 0.012335  0.997  0.459  0.749  read from Table 11.
28  0.016447  0.988  0.454  0.711
35  0.020559  0.973  0.448  0.676
42 0.024671  0.951  0.473  0.646
49  0.028782  0.926  0.426  0.617
56  0.032894  0.897  0.413  0.591
63  0.037006 0.868  0.399  0.566




Time
Days
70
77
84
91
182
365

Computation by the Laplace type solution

o O O O o o

at

L2

.041118
.045229
.049341
.053453
.106906
.214400

a:—:——-—:

182
365

™

©C O O O ©O O © O O O ©o 0O o o o

.004069
.008138
.012207
.016276
.020346
.024417
.028484
.032553
.036622
.040691
.044760
.048829
.052898
.105797
.212174

H

0.838
0.807
77
.748
.443
.153

o O O ©

109

h
c

0.385
0.371
0.357
0.344
0.204
0.070

0.543
0.520
0.479
0.499
0.282
0.098

Remarks

Three months
Six months

One year

1222 (ft2/day) (o/L2) = 0.0005813

.000
.000
.000
.997
.989
.974
.953
.928
.900
.871
.841
.811
.781
.752
.448
.157

O O 0O 0O 0O O O O O O O O O i 4 4

Note: T

“m _ (3.1416) (22.46)

1450

.460
.460
.460
.459
.455
.448
.438
.427
.414
.401
.387
.373
.359
.346
.206
.072

© O O © © ©O O O O O O o o o o ©

0.0487

.000
.845
.796
.751
.712
.678
.647
.619
.593
.568
.545
.523
.502
.482
.285
.100

© O O O © © ©O © O O © © © O O 4k

Remarks

Three months

Six months

One year

Chap. 8

These two examples yield closely similar results because the drainable

depth is small compared to the saturated depth below the drains.

It will be
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profitable to mow consider a somewhat extreme case where the drainable depth
is nearly equal to the saturated depth below the drains and to again compare
the results of computations made by several methods.

As an example of a case where the drains are located about midway
between the water table and the barrier, data from a field installation

supplied by Mr. Ray Winger of the Bureau of Reclamation will be used. The

data are:
Depth of barrier below ground surface 16 ft
Drain depth 9 ft
Permeability 1.4 (ft/day)
Effective voids ratio 0.093

Maximum allowable water table height 3 ft
below ground surface or 6 ft above the drains

Drain spacing 510 ft

Computation of the drainable depth midway between drains by the method

of Moody.
D= (16 - 3) = 13 ft. o = ilﬁ%%ééél-= 195.7 (£t2/day) .
- f% = 0.462.
. amt hm hm
bayes 7 LR
0 0 1.000 6.00
20 .0150 .960 5.76
40 .0301 .882 5.29
60 .0451 .809 4.85
80 .0602 .736 4.42
100 0752 666 4.00
120 .0903 606 3.64
140 .1053 .556 3.34
160 .1204 .506 3.04
180 .1354 .463 2.78
270 .2031 .328 1.97
365 .2746 227 1.36




Time

42
49

One day is 24 hours.

amt
0259

0.7584
0.8848

ot

111

m1 _ (195.7) (24)

Chap.

b b
G
m

0.015
0.008

0.09
0.05

- 3696.8 _ , 118057

L2 5

102

~ 260100

Computation by first approximation method.

Ho
Da = (d + 7;9 = (7 +

ot} (150.54) (24)
L 510°

Time
Days

0
20
40
60
80

100
120
140
160
180
270
365

6

= 0.01389

)
L2

0
.0116
.0231
.0347
.0463
.0579
.0694
.0816
.0926
.1042
.1562
.2112

%*
Read from Table 10.

o =

Kza ; (lbféééo) = 150.5 (£t°/day).
h * h
S ‘
H0

1.0000 6.00
.9979 5.99
9599 5.76
8844 5.31
7992 4.80
7164 4.30
.6409 3.85
5687 3.41
5103 3.06
.4551 2.73
2724 1.63
1583 0.95
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Computation by the method of Brooks.

Time h (- H—0) h (h, + H—0)
Days c c 2 1 1 2
0 6.00 3.00 3.00 6.00
20 5.99 2.99 2.99 5.99
40 5.76 2.76 2.81 5.81
60 5.31 2,31 2.46 5.46
80 4.80 1.80 2.04 5.04
100 4.30 1.30 1.62 4,62
120 3.85 0.85 1.22 4,22
140 3.41 0.41 0.83 3.83
160 3.06 0.06 0.50 3.50
180 2,73 -0.27 0.18 3.18
270 1.63 -1,37 -0.96 2.04
365 0.95 -2.05 -1.75 1.25

Notes: The numbers in the column headed hc are those of the f;rst
approximation. The numbers in the column headed (hc - 7;9 are
those of the first approximation referred to an origin (HO/Z)
above the level of the drains. The column headed h1 is Brooks
second approximation, computed by use of formula 8-10. The
figures in the last column are those of the previous column

referred back to drain level. They compare with the first

approximation figures in the column headed hc'

Reference: Brooks, R.H., 1963, ASCE Paper 3420.




113 Chap. 8

Laplace type solution.
Kd _ (1.4)(7.0)

d = 7.0 ft Y 0093 = 105.4 (ftz/day)
L = 510 ft Hy = 6.00 ft
) aLt hc
ol A R
0 0 1.000 6.00
20 .0081 1.000 6.00
40 .0162 .989 5.93
60 .1243 .953 5.72
80 .0324 .901 5.40
100 . 0405 .842 5.05
120 .0486 .782 4.69
140 .0567 .725 4,35
160 .0648 .670 4.02
180 .0729 .619 3.72
270 .1094 .432 2.60
365 . 1479 .296 1.77

Note: The values in the column headed (hc/Ho) were obtained from

Table 10.

The results of these computations are shown on figure 8-2. The solid
heavy line represeﬁts Brooks second approximation which will here be used as
a basis for comparison. The light solid line shows the results obtained by
use of the first approximation solution. It holds up surprisingly well
even though here the drainable depth is almost half of the original saturated
depth and nearly equal to the saturated depth below the drains. The dashed
curve shows the results obtained from using Moody's computer solution. This
solution and the first and second approximation solutions are not strictly

comparable because they have different initial conditions. The initial
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condition of Moody's solution, however, represents closely a configuration
which would appear at an early epoch in the drainage of a uniform drainable
depth. If Moody's initial configuration is superimposed on such a chart
as that of figure 7 of USBR Monograph 31, it will be found to correspond

nearly to the profile for E% = 0.014. A second approximation curve ob-

L
tained by use of Brooks formula indicates that the parameter should be about

at
g% = 0.010 to produce a close fit. Since the value of —7§-= 0.015 for
L L

time 20 days is substantially this amount it can be concluded that if Moody's
curve is shifted to the right about 20 days on figure 8-2 the effect of the
differing initial conditions will be accounted for. If this is done Moody's
result and Brook's second approximation will be in close agreement over the
first ten days. The solution obtained from the Laplace formulation is
similar in shape to the second approximation curve of Brooks but lies above
it. The reason for this seems to be that this solution accounts for the head
loss needed to produce vertical as well as horizontal flow whereas the other
solutions account for the horizontal component of flow only. A particle of
water initially at the water table ten feet back from the drain, for example,
has to travel six feet vertically and 10 feet horizontally to reach the
drain. The solution of the Laplace equation accounts for this but the solu-
tions derived on the Dupuit-Forchheimer basis only account for the horizontal
ten feet of distance. The drainage is therefore slowed near the drain and
the drainage of water remote from the drain is also slowed because it cannot
reach the drain until the water close to the drain is disposed of. This
comparison brings out the important effect of flow convergence near the

drain. More will be said on this point later.
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Selection of drain spacings

The formulas described can be used as a means for computing drain
spacings on a cut and try basis. The procedure will be illustrated by use
of the first approximation formula. The hc/H values will be obtained from
Table 10. The computation will be based upon figures adapted from Lee D.
Dumm's 1964 paper. The allowable rise of the water table at mid-span at the
end of the irrigation season is 4 ft. It will be assumed that this height

is attained at the end of the previous irrigation season.

Data are:
K = 10 ft/day KD = 220 ft2/day
D =22 ft o = 12 = 1222.23 £t?/day
V =0.18
o 1222.23 _ 4 goos4321
L? 15002
Try a spacing of 1500 feet.
Drainable at hC
Time Depth (= (TT- h
Application Days ft L2 c
Apr 22* 132 0.46 0.0717 0.6267 0.288
June 6 87 0.46 0.0473 0.7920 0.364
July 1 . 62 0.46 0.0337 0.8887 0.409
July 21 42 0.46 0.0228 0.9616 0.442
Aug 4 28 0.46 0.0152 0.9917 0.456
Aug 18 14 0.46 0.0076 0.9998 0.460
Sept 1 0 0.46 0 1.0000 0.460
365 4.00 0.1983 0.1799 0.720
Total 3.599
*Snowmelt

This spacing can be widened. Try a spacing of 1700 ft.
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Drainable h

Time Depth (EEJ (Tf- h

Application Days ft L2 c
Apr 22%* 132 0.46 0.0558 0.731 0.336
June 6 87 0.46 0.0368 0.869 0.400
July 1 62 0.46 0.0262 0.942 0.433
July 21 42 0.46 0.0178 0.984 0.453
Aug 4 28 0.46 0.0118 0.998 0.459
Aug 18 14 0.46 0.0059 1.000 0.460
Sept 1 0 0.46 0 1.000 0.460
365 4.00 0.1544 0.277 1.110
Total 4.111

*Snowmelt

This spacing is too wide. By interpolation, a spacing of 1657 feet would
just meet the requirements of a four-foot rise at the end of the irrigation
season.

The method of M. Maasland

The previous treatments of drainage by parallel drains has been based
upon the concept of a drainable depth which comes into existence at time
zero. This is an idealization of furrow irrigation practices where the
irrigation water is applied during a brief interval of time and produces,
by deep percolation, a drainable depth H .

The Maasland approach is somewhat different and possesses certain
advantages which will be described later. He assimilates the deep percola-
tion from a succession of irrigations to an average infiltration rate 1{ .
The consequences of such an idealization may be approached through the use
of the formula for drainage of a single uniform drainable depth H (f. 8-1).

This is:
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-n2n2 (2)
n=« L
h=47 ° sin (%)
" n=1,3,5...

Suppose the drainable depth dH appears at the time & where & Tepresents
a time variable running between 0 and t . The variable & indicates the
time of occurrence of an event whose effect is to be computed at the time t .

The drainable depth at the point x at the time t will then be given

by
_nz.n.z ((1 (t"g))
t o L2
i 4 3 e . nmx
h=c| = ) sin (=) dg
Vv by n L
n=1,3,5
0
Where %- is the rate of rise of the water table due to the constant infiltration
rate i . The infiltration is considered to be entire water.

By integration

—n211'2 (d(t—ﬁ)) 3t
2
2 N=® L
R ° sin (39
an? n=,1,3,5... n3
0
or
- 2 n:oo
h = 14L l—-sin (nzx)
Kdn3 n=,1,3,5... n3
-n2n2(9§a
. qq 2 N= L
- 1Ak & sin (1Y (8-18)
Kdn3 n=1,3,5... n3

At x = L/2 , the point midway between the drains,
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Also

This is one of the Euler numbers. A plot of formula 8-18 is shown on figure
8-3.

The summation of descending exponentials disappears in time. Then there
is an ultimate steady state given by the summation which is free of exponen-

tials. This is:

{412 "%" 1ogn @ny o 1412 n3 a2
T =

h =
Kdn3 n=1,3,5... n3 Kdr3 32 8Kd

Cc

(8-19)
An independent development for the steady state will be of interest.
The statement that the flow is equal to the supply is

dh _ . L
Kd > = ¢ (2 - x).

0 when x =20

By integration, if h

i

h =mx(L- X).
When x. = %
_iL2
hc = 8Kkd (8-20)

as before. It will be found that the term

. 2 N=®™
14L l—-sin (9%59 is the Fourier series

Vand n=1,3,5... n3




Chap. 8

120

T T LTTTTIT
A 1 T
g y 4 | 1)
I 1 Y 3444 1+ 44
4—. R o 11t I'1 5 B
LY e g f
TIT 1
) nabes dus ] 45 H
"yl ~ HHAH HAH LR ] 349 agParta T ' tH
s ¥ LT VR ! e wua
BER . an & I~ B D Y
h% 1 A ge sy NEESEy 111 — BENERLN = \'
P ) e ] H T4 G ch
. ~4 B8 ~

1 2 N1 10 §

1
T
L |
e |
:
b
‘
=
1
~
| &
o
b
-4
:
-]
-
]
}
i
1

1
T
B
3
1
I
"

I HH NRew JTTH L i
e
L 1 11144

:

49

CY
1
BE |

U
T
e
T
i
>
;
B2y N
T
i
5
o
T
-

\ATad
3
1
-
1
-
:
¥
=
~

tare:
5

i
J“

R A

Il .~
Dy
1
.
|
i |
S |

:
IRRE
o
he 3
n
It
1
!

IA. ».! : Lx kB .|.i = I.AJrl. : 4 ottt - {4 [ 14 me W 344 = et o L gr . e rH
s=ielian it da22 s T LT =y _ a=n = =
”..vln.l 4 - i ﬂ AT 1 = ] - 1 g = ! lwl I




121 Chap. 8
which represents

h x (L - x)

I
2Kd

Formulas of the type of equation 8-20 have been used to estimate drain
spacings. It will be clear that this procedure implies that the irrigation
season is long enough to establish the ultimate steady state. Under ordinary
conditions the irrigation season is too short to establish an ultimate steady
state and the result is that drain spacings obtained by use of ultimate steady
state relations are closer than necessary to provide drainage. To put this
in other words, the use of ultimate steady state formulas, based upon the
concept of a continuous infiltration rate 1i , neglects the favorable effects
of the winter drain-out period.

This difficulty can be substantially overcome if the effects of a
succession of seasonal applications are considered. This is a case of
intermittent operation as treated in Chapter 11. With an irrigation pattern
as illustrated on figure 8-4 the effects of previous irrigations and
cessation of irrigations can be treated in the following way. The height of
the water table midway between drains at the end of the last irrigation season
is of interest. Here T represents the yearly period and T/3 the
irrigation period.

Suppose
(oT/L2) = 0.2

then the computation is made in the following way.
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212
Table 8-2 Computation of h/(%%LJ for intermittent irrigation. (aT/L%) = 0.2.

Irrigation period T/3 .

(ot/12) Yiere
0.0667 +0.0585
0.2000 -0.1071
0.2667 +0.1137
0.4000 -0.1225
0.4667 +0.1250

Total +0.0676

(Compare with figure 8-4.)
The first figure represents the effect at the end of the last irrigation

period which is 1/3 of a year in length. Then

(at/L2) = (0.2/3) = 0.0667

The corresponding value for h/(%gza is obtained from figure 8-3. The next
figure represents a cessation of irrigation at the end of the previous
irrigation period. Here (ot/L2) = 0.2000 because the time is one year.

The third figure with (at/L2) = (4) (0.2)/3 = 0.2667 accounts for the
beginning of the previous irrigation period. The fourth and fifth figures,
together, account for the irrigations made two years previous. As the (at/L2)
values grow larger the two values of the pair approach equality. This explains
how convergence can be obtained even though the values are growing larger with
time. A series of such computations will permit the construction of a chart such
as shown on figure 8-4. With specified values of i , L , K, d, o, T an
(aT/L2) value can be computed and an h/(%%z- value can be read directly

from the chart which includes the effects of irrigations in previous years.

An h value can then immediately be computed. A cut and try procedure for
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estimating drain spacings can then be used which will take account of the
effects of irrigations in previous years.

A direct approach to this problem can be made if it is noted that the
graph of figure 8-4 is nearly a straight line. The straight line approximation

shown has the formula

h

aT
S— = 0.040 + 0.1325 (929 For 0 < ({7) < 0.4
iL L
L

From which, by rearrangement,

L2 hy
(G = 25 cﬁ%) - 3.3125 (8-21)

The problem of determining a drain spacing for the conditions of the problem
used to illustrate application of the first approximation solution of Chapter
8 may now be reconsidered. With

K = 10 ft/day V =0.18

D, = 22.225 ft KD, = 222.25 ft/day

o = 1234.7 ft2/day
Irrigation applications contributing 0.46 ft of drainable depth were made on
June 6, July 1, July 21, August 4, August 18 and September 1. A similar
contribution from snowmelt was indicated for April 22. 1In all (7) (0.46) =
3.22 feet of drainable depth were contributed in 132 days. To accommodate
this to our chart conditions we can assume that these applications were made

in 1/3 year or 122 days. Then

. (3.22) (0.18) _ ft
i= 153 = 0.00475 T

The allowable drainable depth at the center of the span is 4.0 ft and T =

365 days. Then
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hV, _  (4.0) (0.18) _ 0.72
(P = 10.00475) (365) - 1.734

= 0.4152

2
(ET- (25) (0.4152) - 3.3125 = 7.0675

L2 = (7.0675) (1234.7) (365) = 3185100

L = 1785 feet
This compares with Dumm's estimate of 1450 feet. The difference is largely
due to a difference in assumed intervals between applications. In our case
it was about 17 days whereas his last three irrigations were made at 14 day

intervals. A corresponding infiltration rate would be

. _ (3) (0.46) (0.18) _ ft
i= O = 0.00591 oy
and
hV _  (4.0) (0.18) _ 0.720 _
T = (0.00591) (365) -~ 2,157 ~ 0-3338
LZ
o7 = (25) (0.3338) - 3.3125 = 5.0325
L2 = (5.0325) (1234.7) (365) = 2265000 ft2

L = 1506 feet

The ultimate steady state formula would give

Lo ek J(S) (4.0) (222.25)
i 0.00591

1097 feet

This is admittedly too short for the reasons mentioned previously. The trial

procedure described in the paragraph on "Selection of drain spacings'" is much

shortened if the trial value is close. Chart 8-4 and formula 8-21 can provide
good trial values.

Flow of water to drains

The flow of drainage water from the width L between drains to the two

drains bordering the width is:
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_nz-n-z (9.'1.)
n=e .. n= L2
il e

oo

. 8iL 1
o w2 n=1,3,5...n%2 7

|

- ok @
q, = 2Kd (ax

N

n=1,3,5... n

Since the cosine terms which arise as a result of the jndicated differentiations

are 1 when x = 0. But

This is one of the Bernoulli numbers. Then

-n2n2 (%)
q n=c L
T% -1-% 3 & (8-22)
' 72 n=1,3,5 n?
This can be put in the form:
! 8-23
E = 1 - P ( - )

where values of p can be obtained from Table 11.

As an example of the use of this result we may compute the flow of
drainage water from the width between drains using the data of an example
from Chapter 8. It is worthwhile to note that the flow so obtained will be

appropriate for the flow of drainage water to one drain from both sides.

With
o = 1222.23 ft2/day (929 = 0.06627
L
L = 1500 ft i = 0.00591 ft/day
t = 122 days
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From tables

p = 0.4217

1 -p=0.5783
Then

q, = iL(1-p) = (0.00591) (1500) (0.5783) = 5.1266 ft2/day

This means that each drain must be able to pick up and carry away a little
over five cubic feet of drainage water per foot of drain per day. This
estimate can be expected to be below that obtained by the methods which
account for the initial rush of water to the drains immediately following

the application of irrigation water. Drains designed in this way could be
expected to run at maximum capacity for a few days following irrigation.

Some comparisons will be found in the paragraph on "Local convergence losses."

Local convergence losses

Where tile drains are used, the flow, which has been occupying the entire
saturated depth, must converge toward the drain. This means that the flow
must pass through restricted areas and it must be expected that increased
head losses will be required to move the flow to the drain.

The following-development has for its purpose the evaluation of these
convergence losses.

Consider the expression (Byerly)

Pg
- 2 (IXy 2 (1Y
P1 = loge [cosh ((i) cos< ( d)]

where p1 represents the pressure needed to drive the flow. It is measured

in feet of water. It is a solution of the Laplace equation
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By differentiation

apl P, 2 cosh (%%0 sinh (%%9

m
X T osh2 (%) - cos? () d

Then

3p

Fra 0 if x =0 when y >0

By differentiation with respect to vy

’ap1 Py 2 cos (== y) sin ( )

T
oy m cosh? (TTJ - cos? (IX) d
d
Then
Bpl
Ty = 0 when y=4d
= 0 when y =0 if x>0

The idealization is as shown in figure 8-5.

b}
.- Drain of mlolfus\a 'TWa_‘r.er-Ta .e \

. : ) ¢ - . ., - - “_—; R d‘ -
!mpermeabie \ < j' ) "':’ - : : J ‘:‘::'-

//AO?VV/////////7/A4/%77/////////////

Fig. 8-5 Drain.
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Chap. 8
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The origin is at the center of the drain and a sink is located there. The
flow approaches from the right and goes to the sink without crossing the vy
axis. The idealization neglects the presence of saturated depth above the
elevation of the drains. The tacit assumption is also made that the flow
enters the drain through a quadrant. The quantity p, can be considered as
the pressure which drives the flow. The flow approaches the drain along a
strip of uniform width d . The pressure difference between the point y = 0

and x and the point y =0 and x = a is

Py [cosh? (7D - 1]
Py - P3 = 5 logg

[cosh2 ( ) - 1]

The pressure gain out to x due to the uniform flow in the strip is:

. 2p0x
Py = 74

The gradient, when x is large compared to d , can be inferred from the
expression for (apl/ax) . When (mx/d) >> 1 then cosh (359 and sinh (%%9
become large compa?ed to unity and nearly equal while co s? ( ) can never
exceed unity. Then when (mx/d) >> 1 , g§-+ 2 po/d . The above expression
for p, can be derived from this result. It represents the head loss which

would be needed to drive the flow
Kd o= = 2Kp,

from the point x to the origin if there were no convergence.

The pressure loss due to convergence is:

P P )
[p; - P, - P3) = - log, [cosh? (G - 1] - L log [cosh? (B - 1] - &%
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X, . . 5 TX .
when (Tfa is large compared to unity then cosh (TTa will be large
compared to unity and
2 (TXy s 2 (TX. X
cosh (d) 1 cosh (d) (If 3 >> 1)
under these conditions also
2mx
T
2 (TXy . 8 S
cosh (d) 7 (1If 3 >> 1)
then approximately
p P p
0 2 (TXy _ = 0 27X .0 - 2% _
- loge [cosh (d) 1] - ( ] ) loge e - loge4 = [d 0.44127] P,
If (x/d) is large compared to unity the quantity 0.44127 can be dropped. If

(ra/d) is small compared to unity

ma

cosh? (%?J =1+ oy

and approximately

2
2 T3y = (7a.
[cosh? (51 - 1] = (5D)
so that
Po 2Py
d 2 T3y _ = Y na.
p- loge [cosh (d) 1] p- loge (d)
Finally
2p,X  2p
- 0 0 ma
[Py - Py -5l = - — log, () -

2 1 .ma"®
+§(-d—) + ...

2p0x
d

8
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Figures 8-6 and 8-7 are reproduced here through the courtesy of the
American Concrete Institute.

These figures illustrate the close relationship of the mathematical
treatments of the flow of heat in solids and the flow of groundwater. These
charts first appeared in a paper on "Insulation for Protection of New Concrete
in Winter" by L. H. Tuthill, R. E. Glover, C. H. Spencer and W. B. Bierce in
the Journal of the Concrete Institute for November 1951. The charts appear
on pages 262 and 264.

The local resistance incident to converging flow to a drain here

replaces the resistance to heat flow produced by form insulation.
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or

We need a ratio expressing the flow rate and the head causing the flow. Set

Ehy = q (8-24)

Where hO represents the head required to overcome the convergence losses

and q represents the flow to unit length of drain from one side. Then:

2Kp0 mK

h, - 2p
0 0 d, log_ (
m 1Oge (Tfa) e

E =

£1g (8-25)
ma

As an example of the use of this result the problem whose solution is
given in the paragraph on "Selection of drain spacings' will be resolved

taking the convergence losses into account. In so doing, the charts pre-

pared for an analogous problem in the flow of heat will be used. With

K = 10 ft/day o = 1222.23 ft?/day
d = 22 ft Kd = 220 ft2/day
a=0.5ft L = 1500 ft

d, 22 _ d.
(7a) = T.5708 - 14-006 @ > 1!

loge 14.006 = 2.63949

7K (3.1416) (10)

E = I = ~5 563945 = 11.902 (ft/sec)
log, ()

EL _ (13.843) (1500)
KD ~ 220

= 81.152 (Dimensionless)

At the end of the irrigation season the depth of water at the drains is

estimated in the following manner:
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Drainable

Time Depth (EED h e hy
Application Days (feet) L2 &) (feet)
Apr 22* 132 0.46 0.0717 0.025 0.0115
June 6 87 0.46 0.0445 0.030 0.0138
July 1 62 0.46 0.0337 0.035 0.0161
July 21 42 0.46 0.0228 0.045 0.0184
Aug 4 28 0.46 0.0152 0.055 0.0253
Aug 18 14 0.46 0.0076 0.082 0.0377
Sept 1 0 0.46 0 1.000 0.4600
365 4.00 0.1938 0.010 0.0400
0.6228

*Snowmelt

**From chart of figure 8-7.

Then if water flows to the drain from both sides
2q = 2Eh = 2 (11.902) (0.6228) = 14.825 ft2/day .

This value is about three times as high as was obtained for this case by using
the Maasland idealization. The reason for the difference is that the value
computed above is a peak value whereas the Maasland value is in the nature of

an average. It would be good engineering to design the drains to carry the

peak flows since, otherwise, the computed drainage performance could not be
obtained. It may bé noted also that the additional cost of a slightly larger
tile would be a small part of the cost of installing the drains.

1t remains to assess the effect of the convergence losses upon the drainage

performance. The following computation will provide drainable depth values at
midspan which can be compared with similar values where the convergence loss

was neglected.



Application

Apr 22*
June 6
July 1
July 21
Aug 4
Aug 18
Sept 1

*Snowmelt

Time

Days

132
87
62
42
28
14

365

S~ O O O O O o ©

Drainable
Depth
(feet)
.46
.46
.46
.46
.46
.46
.46
.00

o O O O O ©

**From chart of figure 8-6 with (EL/KD) = 81

.0717
.0445
.0337
.0228
.0152
.0076

.1938

2.

O = = O O O o ©

Chap. 8

(feet)

.288
.380
414
.442
.455
.460
.460
.840
3.739

o O O O O O o ©

A comparison of the results of this computation with a similar one in

the paragraph on selection of drain spacings will show that the effect of

local convergence on drain performance is not great.

As would be expected,

the computations show a slower drainage when local convergence losses are

accounted for.
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Return flows from irrigations

The idealizations described in this chapter can be adapted to the task of
estimating the pattern of return flows supplied by deep percolations originating
in irrigations. These return flows are often an important part of the water
supply in irrigated areas. Figures 8-8 and 8-9 show how the conditions in a

river valley can be correlated with the parallel drain idealization.

Ground\ _

o N i ,- ‘_,,", [

Water table _t

-.\'.. .X R N I AR TR DT . Barrier o

RN -

<
[‘I/ /////'//ff//////////////////////////]/////// e /////// ////////////;577577777

, L

Fig. 8-8 Parallel drain idealization.
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Fig. 8-9 Idealization of a river valley.

Because there is no flow across the line midway between drains, as shown
in figure 8-8, the figure may be cut in two there and rearranged to bring the
drains into coincidence, as shown in figure 8-9. Here the river replaces the
drains. Use will be made of idealization 8-9 later. Mathematically, the
idealizations of figures 8-8 and 8-9 are identical so long as L represents

both the valley width and the drain spacing.
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Chapter 9

Stream depletion due to a well

Formula 3-1 of Chapter 3 is appropriate where a well draws water, at the
constant rate Q, from an aquifer of uniform properties and of infinite
extent. The presence of a flowing stream may impose a condition of no draw-
down along its course. If the course of the stream can be idealized as a
straight line the condition of no drawdown can be imposed by use of an image
well as explained in Chapter 10. In this case the image well is a recharge
well of strength -Q and is located at the same distance from the stream as
the pumped well and directly across the stream from it. The gradients imposed
transverse to the stream by this combination can be computed from equation 3-1
and the flows produced by them can be summed along the whole stream length.

In the mathematical sense this will be from - © to + o . The depletion
flow will be zero at time zero and will gradually rise toward Q as time
increases.

The depletion of the stream by the well, computed in this way is given
by the expression

X

1
( )
ql. 2 4ot -u?
— = 1 - = f e du (9-1)
Q Jr !

For a given case this can be evaluated by use of Table 8. Details of this
development are given in the paper by Glover and Balmer 1954.
Example

A well is located one mile from a stream. The aquifer properties are
KD = 0.270 ft2/sec V = 0.17 o = 1.59 (ft2/sec). It is desired to estimate
what part of the flow of this well will be depleting the stream after the

pumping has continued for three months.
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With x, = 5280 ft =t (3) (2628000) = 7884000 seconds

1
X
Y4at = V(4)(1.59)(7884000) = 7077 (/__) = 0.746
dat
0.746
2 -u
From Table 8: — [ e du = 0.70858
™
0
then
9
T 1 - 0.70858 = 0.29142

and the stream depletion at this time is about 29 percent of the well flow.
If the well had maintained a flow of Q = 1.50 ft3/sec the stream depletion,

at this time, would be

a; = (1.50)(0.29142) 0.437 (ft3/sec).

The pattern of stream depletion due to a well can be of interest. If

equation 3-1 is written in the form:

YA
s = Q eV du
- 2nKD u
Vx2+22
V4ot

- (X2+ zz)
3s _ _-Q_xe 4at
X 21KD  x%+z2

The image well will produce a similar gradient. Then the flow from the

stream, per unit length of the stream, will be:

x12+z2
2 T
3s Q x1 ©
f = 2KD % C x (9-2)
™ (x12+zz)

The chart of figure 9-1 has been prepared by use of this expression.
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An ultimate steady state is reached when (xl/V4at) becomes zero.

Under these conditions the flow coming from the reach -z to +z is given

by

2
x,4dz
J fdz = "Q' f L = 2 arctan 2 (9-3)

2.,2 ™ X
/s _Z(x1 +2¢) 1

The figures on the chart which read vertically show values of this integral.
When the ultimate steady state is reached, for example, one-half of the flow
of the well will come from a reach of the river 2x1 long centered on the

well. A similar reach 10x1 long will supply 87 percent of the well flow.




