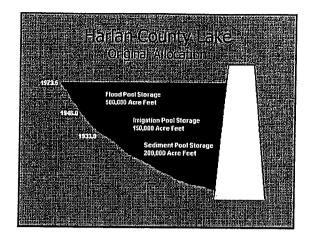





#### The Challenges

- Harlan County Lake continues filling with sediment
- The water supply into Harlan County Lake is shrinking
- Plan for proper use of reservoir resources among competing purposes
- Address uses in water-short periods

## The Opportunities


- Refine annual water supply forecast
- Define future operations of lake
- Share the shrinking water supply
- Identify areas impacted by decreasing inflow
- Address long term remedies

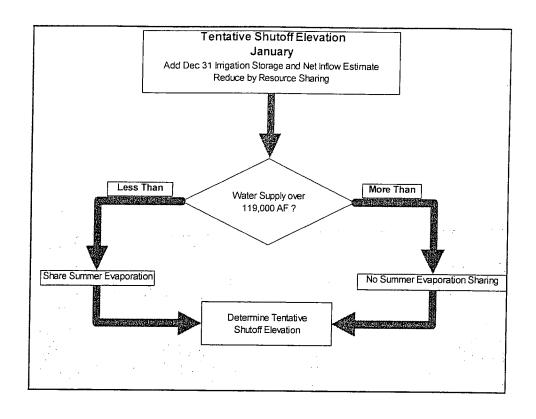
## Why A Consensus Plan Now?

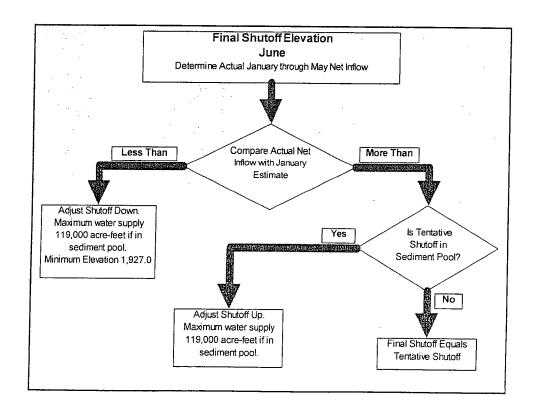
- Long-term water supply contract renewal
- Eliminate crisis management
  - (1991-92 drought experience)
- Better resource management

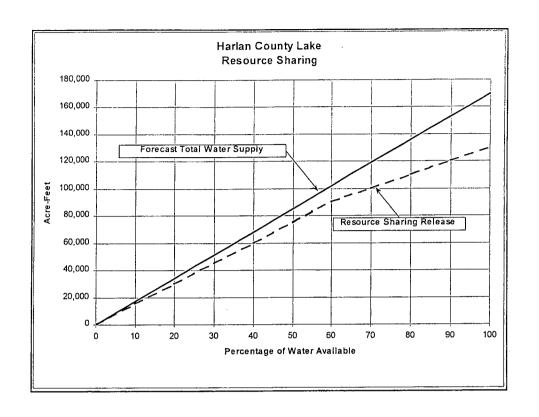
#### Consensus Plan

- Revise operating procedures
- Adjust storage for sediment
- Examine lake operation and maintenance cost methodology
- Address long-term issues
  - Republican River Compact compliance
  - Depleted inflows
  - Irrigation efficiency
  - Balance all project purposes

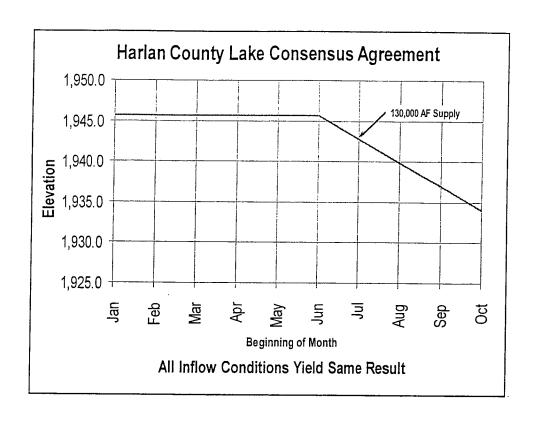


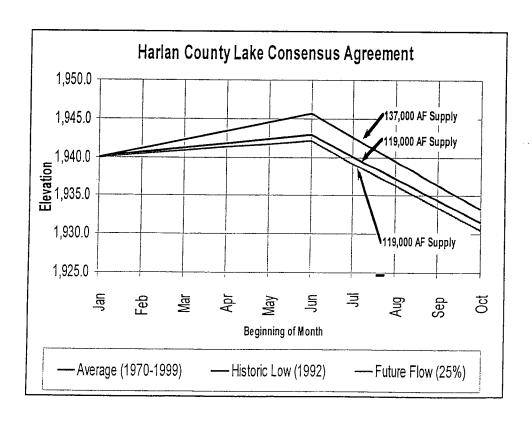

# The Revised Operating Plan Components

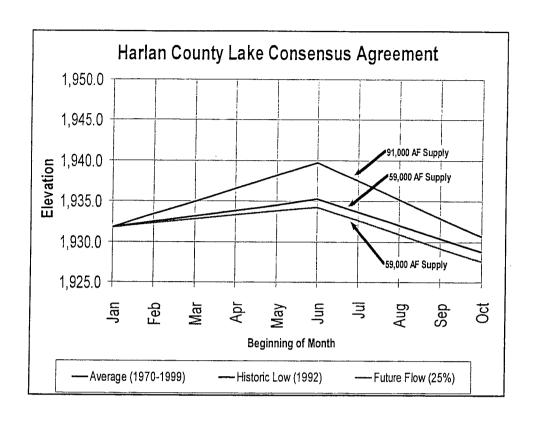

- Estimate current sediment accumulation
- Forecast water supply
- Share water supply
- Low inflow adjustment (sediment pool)
- No irrigation release below 1,927.0 under the operational agreement of the contract

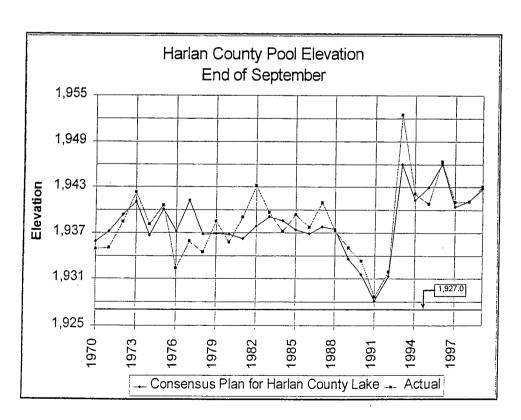

## What's New?

- Share summer evaporation losses
- Formalized, consistent approach for use of sediment storage
- Shares available water supply


|     | •           |
|-----|-------------|
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     | <del></del> |
|     |             |
|     |             |
|     |             |
|     | <del></del> |
|     |             |
|     |             |
|     |             |
| ·.  |             |
|     |             |
|     |             |
|     |             |
| •   |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     | <del></del> |
|     |             |
|     |             |
|     |             |
| *** |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |
|     |             |




|                 | January Declared<br>Irrigation Water<br>(Acre-Feet) | Actual<br>January-May<br>Inflow                                   | End of May<br>Elevation<br>(Feel) | May Stored<br>Irrigation<br>(Acre-Feet) | Shut Off<br>Elevation<br>(Feet) |
|-----------------|-----------------------------------------------------|-------------------------------------------------------------------|-----------------------------------|-----------------------------------------|---------------------------------|
| 1,945.72        | (300000<br>1                                        | Average (1970-1999) :<br>Historic Low (1992)<br>Future Flow (25%) | 1:945.7<br>1:945.7<br>1:945.7     | 130,000<br>130,000<br>130,000           | 1,934.0<br>1,934.0<br>1,934.0   |
| 1,940.0         | 119,000 III                                         | Average (1970-1999)<br>Historic Low (1992)<br>Future Flow (25%)   | 1,945.7<br>1,942.9<br>-1,942.1    | 137,000<br>119,000<br>119,000           | 1,938.2<br>1,931.6<br>1,930.5   |
| 1,935.0         | 86,000                                              | Average (1970-1999)<br>Historic Low (1992)<br>Future Flow (25%)   | (1942.5<br>- 1,938.6<br>1,957.4   | 118,000<br>86,000<br>86,000             | 1,931.0<br>1,920.2<br>1,928.0   |
| 1 981.8         | (59)0000 · · ·                                      | Average (1970,1999)<br>Historic Low (1992)<br>Future Flow (25%)   | 1,939.7<br>1,935.2<br>1,934.3     | 91,000<br>59,000<br>59,000              | 1,930 6<br>1,928 8<br>1,927,5   |
| 1,92000         | 46,000                                              | Average (1970-1999)<br>Historic Low (1992)<br>Future Flow (25%)   | 1 938 5<br>1 933 7<br>1 932 7     | 78,000 #<br>-46,000<br>46,000           | 1,930.4<br>1,928.5<br>1,927.2   |
| ij <b>927</b> 0 | <u>26</u> (000                                      | Average (1970-1999)<br>Historic Low (1992)<br>Future Flow (25%)   | 1966  <br>980  <br>1980           | 58,000<br>26,000<br>24,000              | 1.930 0<br>1926 0<br>1927 0     |









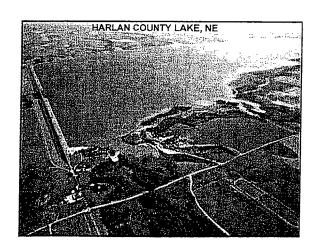
## Environmental Impact Statement (EIS) Process

- Develop and analyze alternatives
- Draft EIS published and public comment
- Revised Preferred Alternative based on contract negotiations and public comment
- Published Technical Report and reopened comment period
- Publish final EIS/sign Record of Decision

#### **Technical Report Process**

- Identify differences between the "No Action" alternative and the consensus plan on Harlan County Lake
- Publish Technical Report on effects of the consensus plan
- Include comments in the Republican River final EIS
- Sign Record of Decision
- Include consensus plan in Harlan County Lake Regulation Manual

#### **Technical Report Conclusions**


- Plan closely follows historic operations
- No significant resource effects compared to "No Action" alternative
- Monitor & react to changing conditions

#### Timeline

- Early April Final contracts proofed and internal review
- April 22 Comment period closed on draft EIS
- Early May Public review and 60-day comment period on contracts
- Early June Final EIS and Draft Record of Decision (ROD) out for 30-day public review
- Mid-July ROD signed (closes the EIS process)
- July 2000 Contracts executed

#### Now What?

- Tonight: Comments, Questions and Input
- Written comments through April 22, 2000

