Conservation Practices to Increase Water Yield in the Republican River Basin

John Thorburn Tri-Basin NRD 2/21/07 DRAFT

Introduction: Soil and water conservation measures have been widely utilized by landowners in the Republican River Basin, because many of these landowners remember the devastation of the Dust Bowl and drought of the 1930s. Concerns have been raised recently that some of these soil and water conservation practices have reduced streamflows, making it more difficult for Nebraska to maintain compliance with the Republican River Compact. I believe that adoption of new conservation techniques and practices, along with modification of certain existing conservation structures, could significantly increase water yield from Republican River tributary watersheds, while protecting the environment and involving the citizenry in compact compliance in a positive way. Below is a short, incomplete list of conservation measures that could increase water yield. Implementation of these measures will require cost-share funds, technical assistance to farmers and landowners from government, industry and UN-L Extension.

- I. Improved riparian land management techniques
- A. Eradicating vegetation in stream channels (reduces consumptive water use and reduces water losses to streambed and bank storage)
- B. Improved riparian forest management through selective logging (reduces consumptive water use, improves wildlife habitat)
- C. Eradication of invasive riparian plants (reduces consumptive water use, improves wildlife habitat)
- D. Intensify grazing on riparian lands (reduces consumptive water use, improves wildlife habitat)
- E. Improve pasture condition, reduce brush using prescribed fire (increases runoff, reduces consumptive water use due to trees, brush)
- II. Soil, irrigation water conservation measures
- A. Modify water-holding terraces to allow water to flow out through grassed waterways or tile outlets (reduces consumptive water use, increases streamflows in tributaries)
- B. Educate irrigators about dryland, ecofallow farming techniques (reduces irrigation water consumption, potential to increase net profits for farmers)
- C. Encourage irrigation efficiency improvements (reduces irrigation water consumption, potential to increase net profits for farmers)
- D. Educate irrigators about no-till farming techniques (reduces irrigation water consumption, increases soil structure and water-holding capacity, potential to increase net profits for farmers)

E. Educate irrigators about the value of crop rotation (reduces irrigation water consumption, increases soil structure and water-holding capacity, potential to increase net profits for farmers)

III. Range, pasture management

A. Encourage landowners to remove or reduce storage capacity of certain small dams, particularly in watersheds immediately upstream from Harlan County Reservoir and downstream from Harlan to the state line. Cost-share would assist landowners with removing or modifying dams, and with providing alternative livestock water supplies (reduces water consumption due to evaporation, increases streamflows in tributaries, potential to increase net profits for cattlemen due to lower rates of internal parasites and disease in cattle)

B. Improve range condition through prescribed fire (increases runoff, reduces consumptive water use due to trees, brush)

IV. Urban, industrial conservation

- A. Educate homeowners about xeriscaping techniques (reduces consumptive water use)
- B. Work with industries to increase water use efficiency (reduces consumptive water use)

URNRD MRNRD Certified Acres		pumping volamos facros				Depletion SW Depeletion GW GW SW 163,500 50,000 213,500 212,500 161,000 51,500 211,500 211,500 155,000 55,000 151,500 57,500 29,000 208,000
MRNRO LRNRD Total		11.4 7.1 5.2 5.6 14.6 9.6 11.8 8.7 16.3 13.2 11.9 8.9	MRNRD LRNRD Total	20000 24000 57000 40000 48000 114000 150000 125000 650000 170000 149000 707000 190000 173000 764000	2.7 5.3 4 3.6 9 9.6 7 6.5 7.5	Reduction Scenarios Dry Pumping Impact Reductions Reduction 0 1 2,500 2 5,000 3 8,500 4 12,000
URNRD MF 72,091		Inches/Certifled Acre 13.5 10.2 17.7 12.5 17.2 Average 14.2 StDev 3	URNBD	QR 13000 26000 UP 375000 Total 388000 401000	Ches/Certified Acre QR 2.8 S.7 Average Q 4.25 UP 11.3 NRD 10.2 Average Q 10.6	Depletion Depelation SW Total 74,000 248,000 76,500 247,000 77,500 246,000 80,000 245,500 82,000 244,000 83,000 242,000
Depletions SW Total SW 112,290 185,460 297,750 1998 112,510 185,460 297,750 1999 99,400 203,490 302,890 2001 79,450 212,870 296,530 2002 85,470 180,440 265,910 SiDev 15,146 14,140 14,567	2003 2004 2005 2006		Dec target depl AF =	200,000 185,000 GW 25,000 SW 10,000 Mound Cr.		Reduction Scenarios Average Impact Depletion Pumping Impact 0 - 174,000 1 3,500 170,500 2 5,500 168,500 3 9,000 165,500 4 12,000 159,000 5 15,000 159,000