Republican River Compact Administration
Work Session
Burlington, CO
July 26, 2005

1. Status of Study on Non-federal Reservoirs and Land Terracing
2. Letter to State Conservationists
3. Status of Lower Republican River Appraisal Study
4. Engineering Committee
a. Accounting for 1995-2003 2
b. Accounting for 2004
c. Other
5. Plan of Study for Ground Water Irrigation Recharge
6. CREP Programs in Nebraska and Colorado
7. USDA Farm Bill 2007 (Modified CREP)
8. Status of Implementation of the Settlement Agreement
9. Review of Minutes for 2004
a. June 9, $200443^{\text {rd }}$ Annual Meeting
b. January 12,2005 Special Meeting
10. Rule addition Proposal Regarding Inter state water transfers
11. Principia Mathematic contract

$$
\begin{aligned}
& \text { compact values. Get yup of tables }
\end{aligned}
$$

Burlington Colorado July 26,2005
RRCA Work session－see agenda
（1）Gordon Aycock－cons－study update report
a have instrumented sone 3^{2} reserv oils level ping Database， 6 are the sriginatiterrauss + dance stillfiun etinal） a UNL water balance ms lely in NE（pot infidel model．．．）
－Sappa crack inks other areas in is being mapped wt EIS process
－Walked perimeter of whetted anear \＆the apparent normal pol elevation．Will walk them each tine so an anear capaerity table can be generated．
－ 6 terrace fields will be studied for water flow
－Ideally 400－500 terraced fields would be closely studied－perhaps the local NRCS specialists could be asked to help through a letter to the State Conservation init．Aletter
＊has been drafted for commissioners to consider， －＂MABQ quads＂is a term Gordon west，they are wing a quod by quad method－arthophoto quads
？What about the history of terrace installation over time by county？missing records can be a problem t thane in a privacy issue
－ 2009 completion target
（2．）$*$ commissioned will sign a request lefter on July 27 at mtg．
（3．）Lower Rep．River Appraisal Stuly－Jack wergin complete + published in 2005 －see later in notes（3 cont．）
（9）Engineering Committee Report
（a）Harlan Split 解教作 language proposal－this would be an amendment to the Accounting procedures
b. 1995-2002 Accounting update excersise George Austin properad a change in the below state tine Lovewell information
c. Accounting for 2004
d. OtHer Principia Mattematica -2 model $C D_{s}$ givento Roger \leftarrow runs
10 tasks from Last year - Rundown by Ken Knox

- Eng. Cu Ae still needs to develop a manual RRCA RCA
Accounting Discussion ensued on whether official endorsement is needed for the GW Model Users Manual "Alow to rum the Programs" - Willem's dercrip Aton of manual
* Patterein-"Let Engineering committee attach it to their report." ken knox will add that.

To be continue).
(3) cont. - \$1,5 million for furthering study into plans of action to conserve /stone more witter needs to be introduced through Moran (ks) + Osborne (NE)
(5) Plan of Study for Ground Water Irrigation Recharge background by Pope \& followed by scott Ross with handout from George Austin
scot Ross-inconsistencies of applying numbers for recharge is alleged by scottasc, ie. Irrigation recharge methodology

RRCA groundwater irrigation recharge plan of study

Kansas Discussion Draft: July 25, 2005
Note: In response to the Engineering Committee's encouragement to make the study purpose as clear as possible, the study effort has been renamed from a study of irrigation efficiency to a study of groundwater irrigation recharge.

Background/Scope of issue:

During the development of the RRCA groundwater model, each state used independent approaches to the development groundwater pumping and recharge datasets based on the best data available for each state (see Republican River Compact Administration, Ground Water Model, June 30, 2003). In many cases, that data was limited, esp. for the historic period of record.

- Colorado developed its groundwater irrigation pumping estimates based primarily on estimates of irrigated acreages, crop distributions, and crop irrigation requirements with additional reductions for observed deficit irrigation. Values used for irrigation recharge are based on these pumping estimates and assumed irrigation efficiencies by system type, with reductions for spray loss. Since 2001, Colorado has used these methods and will likely continue.
- Kansas developed its estimates of groundwater irrigation pumping using a combination of approaches, reported water use for the recent record (1989 to 2000) and an approach similar to Colorado for the earlier record. Kansas' method for estimating recharge from groundwater irrigation is currently the same as Colorado, except recharge rates were different. Since 2001, Kansas has relied exclusively on reported water use to derive its pumping estimates. Recharge estimates are based on systems types and assumed system efficiencies with adjustments for spray loss. These methods will continue to be used until better methods can be developed.
- Nebraska's estimates of groundwater pumping were based largely on power records although they also utilized meter records from the Upper Republican NRD. Pumping rates were based on well registrations, which were further complicated by the addition of co-mingled lands. Historically, estimates of groundwater irrigation recharge in Nebraska have trended from 30\% (up to 1970) to 20% (year 2000), reflecting the shift in irrigation systems and practices. Since 2001, Nebraska has estimated irrigation recharge at 20% of pumping, with an increasing reliance on metered pumping.

In reviewing the resulting estimates of recharge by state, there is a significant disparity, with Nebraska's current recharge estimates being significantly bigher. The need to address these differences is reinforced at this point with new controls in Nebraska, which provide for multi-year allocations, likely resulting in higher application efficiencies and more frequent deficit irrigation, both are expected to reduce irrigation recharge.

Proposal

The RRCA will create a groundwater irrigation recharge committee to review this issue over the coming year and bring recommendations to the RRCA at the next annual meeting. In addition to members of the engineering committee, each state will recruit one or more experts in irrigation systems (likely from their universities extension and research staff) to assist in the study effort. This committee will be charged as follows:

- Review the methods of estimating groundwater irrigation pumping and recharge used in the development of the RRCA groundwater model and currently used in the annual updates with emphasis on current practices.
- Survey the current literature and consult with irrigation management specialists to determine methods to estimate irrigation recharge. This review shall include but not be limited to, methods based on irrigation efficiencies by system type. A range of reasonable values shall be developed by the committee.
- Make recommendations on recharge rates to estimate groundwater irrigation recharge in the RRCA groundwater model.

Essentially the proposal is to put together to stine with Eng. Center. t University type to make literostere previn discus meth oology ot them come back t make recommendations
Proper say right now we essentially 1-net pumplig \approx recharge
Nebraska is different
Ross -more deficit irrigation with allocations mean our current model processes will become out dated.
batterson-isit that what a model recalibrootion is for?
Pipe: Recharge as a percent of pumping will ge down as a result of in urease d deficit irrigation triggered by new allocations in the NRDS.
PatiersoL-lets continue to gather pase dato and look at recalibrating the model. Changing mothers for pant of no del conganstions may not result in valid model outputs.
\ngtr
Simpson - Have in Eng. Comntter trike to cone back with a full recommendation for nexotinty
in 2006
(6) CREP Report (ENIf too)
 - 9,000 are in EDIT - 4 y aw

Legislature approved COSt share for CREP
fope-Wht happens to water saves-can it be used by someone else? Watenbuse Contract - increased reservoir storage accounting by US2. Canal cent use water else where
Nat. Pion tremifer to instrear flow permit in the absence of a storage right
Colorado- Scott Richratt worked on it 30,000 irrigated land o)
5,000 dry land on hopefully tin sign-up by November
Tiers six: 1-mile from stream sets preference as welles permanent retirement
Rep. River Water district is going to provide 150 To kcal cist shane + 5% in -kind contribution credit
After is years the Colorado folks can go dry land, but cant go irrigated again
(1) USDA Farm Bill 2007 (iodine) $C R E \theta$)i.e. To allow dry land so local economies Scot are not so potentially imported
$R_{\text {win-If you }}$ aldo add habitat management you could git wildlife folks on board too.
(2) Status of Implementation of the Settlement Agreement
(9) a few wore changes
(10) RRCA Regulation No._ Permitting a new appropriation of water in one state to be beneficially consumed in another State.
see handout
Engineering Cute will we attorneys to finalize this.

Pope: Have you forcast what if will take to get into compliance by 2007?
Pattapfon: by $2006 \begin{gathered}50 K+20 K \\ \text { CRED } \\ \text { EQIP }\end{gathered}$ acres should be signedup
We have 3 allocation programs to clamp down or pumping
Fanning: new rubies $14,5 \rightarrow 13,5$
transfers more difficu It
Smith: baseallication (39 over 3 y 1 in ci)
certified acres 3/2000 acme

$$
\begin{array}{ccc}
7000 & 16,3^{\prime \prime} & 2003 \\
\text { noterge } & 14.4^{\prime \prime} & 2004
\end{array}
$$

gravity operations will struggle
transfer; restricted (~ 8 on 1000 aches)
Thorburn: Limited irrigated acres
maintain mound
certified acres 192,000 aches, (225008 cones) assessors are accurate

Draft 7-25-05
RRCA Regulation No. \qquad . Permitting a new appropriation of water in one state to be beneficially consumed in another state.

Any new application to divert water in the Republican River Basin in one state to be put to beneficial consumptive use in another state shall meet the following requirements:

1. A new appropriation that has a point of diversion proposed to be located in an area under a moratorium, closure, or other regulation limiting the development of new appropriations, shall be approved only if the new beneficial consumptive use to be authorized will be offset by a decrease in beneficial consumptive use under an existing water right in the same state of Sub-basin that the beneficial use will occur.
2. The decrease in existing beneficial consumptive use shall be equal to or greater than the proposed beneficial consumptive use on an annual basis and from an existing water right that:
A. Is from the same source of water supply;
B. Is not abandoned or forfeited, and is in good standing in the state in which the existing point of diversion is located; and
C. Does not exceed the annual quantity of water authorized by the state where the existing point of diversion is located.
computed (stream depletion)
3. The beneficial consumptive use of the proposed appropriation and for the offsetting water right for purposes of compact accounting shall be determined by using the RRCA groundwater model. The beneficial consumptive use of the offsetting water right shall be based on the average annual legal beneficial consumptive use by the existing water right for the five full calendar years immediately preceding the date of the application. The beneficial consumptive use of the proposed water right shall be determined by assuming that the water right will be fully exercised every year.
4. The new appropriation shall meet all of the requirements imposed by the state in which the proposed point of diversion will be located, and the state in which the beneficial consumptive use and the offset will occur.
5. The following procedure shall be used for approving a new appropriation of water which will be diverted in one state and put to beneficial use in another state:
A. Within 30 days of the receipt of a complete application which proposes to divert water in one state which is proposed to be put to beneficial consumptive use in another state, copies of the application and any pertinent attachments shall be provided to other states by the state in which the application is made.
B. The state in which the proposed point of diversion will be located shall provide the applicant with the requirements that must be met in order to obtain approval. The applicant shall also be notified that joint approvals by the other state(s) and the RRCA will be required.
C. The applicant shall provide each affected state and the RRCA with all of the data needed to evaluate and process the application.
D. The applicant shall first receive the approval of: (i) the state in which the point of diversion will be located, and (ii) the state in which the beneficial consumptive use will and the offset will occur, contingent upon approval by the RRCA. The applicant shall then submit those contingent approvals to the RRCA at least 30 days prior to a RRCA meeting.
E. (i)The state in which the proposed point of diversion will be located shall permit the point of diversion, the maximum annual quantity of water that may be diverted, and the maximum instantaneous rate of diversion. (ii) The state in which the proposed beneficial use and offset will occur shall approve the: (1) authorized place of use, (2) any necessary terms, conditions, and limitations for applying the water to beneficial use as necessary to protect the public interest, (3) the annual quantity of beneficial consumptive use that will be used to offset the new appropriation, and (4) the terms and conditions for

- diversion of any water use authorized by that water right that will not be used as an offset.
F. The RRCA shall consider any complete application presented for approval or denial at least 30 days prior to a RRCA meeting.
G. The new appropriation shall not be allowed until it is approved by: (i) the state in which the proposed point of diversion is located, and (ii) the state in which the beneficial consumptive use will occur and the offset right is located, and (iii) the unanimous action of the RRCA.

6. As provided in Article IV.C. 1 of the FSS, streamflow depletions are assessed to the State in which the beneficial consumptive use occurs.
flow meters 90% observation wells
new wells can only serve certified acres
Clements -1 $1 \frac{5 t}{}$ year is going
split allocation (183) west 36"
(4) east 33"
gravity irrigators may suffer pivots should be oK 330,000 certified acres
NO Transfers
100% metered

\$150K LRNRD
$\$ 110 \mathrm{~K}$ URGED
$\$ 155 \mathrm{~K}$ MRNRD

Districts do spot checks + will do readings annually t provide repair service
5% reduced pumping target (1998-2002)
Colorado summary -
3000 acres signed up
would like to gent 30,000 aches in '6, on
District will offer in centimes to sfcc, project on M.FK
Looking for rain.

Kansas - Ks Bostwick is short
your $1^{\text {st }}$ two years are not looking good
(11) Continue contract with Principle Mathematica-Add 200 * Nebraska has nt paid yet for current year (2004)

Lovewell Computations for Calendar Yeara9954

By George Austin, 5/8/2003
Lovewell Computations for Calendar Year 1996,

Input	Calendar Year Month 1995 Dec 1996 Jan 1996 Feb 1996 Mar 1996 Apr 1996 May 1996 Jun 1996 Jul 1996 Aug 1996 Sep 1996 Oct 1996 Nov 1996 Dec	Feet EOM EI ${ }^{1}$ 158108 158145 158179 158215 158257 158548 1582.05 158188 158104 158175 158144 158334	Acre-Feet Gross Evap. ${ }^{\dagger}$	Inches Precip. 	Acre-Feet CC inflow	Acre-Feet CC Outflow ${ }^{1}$	Acre-Feet WR Outflow ${ }^{1}$	Acre-Feet EOM CC Storage ${ }^{4}$ 	Acre-Feet EOM WR Storage ${ }^{4}$ 晎
'Bureau Data ${ }^{2} 1997$ Area-Capacity Tables (Corrected) ${ }^{3}$ USGS Data									
${ }^{4}$ From Previous Year's Calculations									

By George Austin, 5/8/2003
Lovewell Computations for Calendar Yeary997,

Lovewell Computations for Calendar Year 1998,

Lovewell Computations for Calendar Year1999,

By George Austin, 5/8/2003
Lovewell Computations for Calendar Year 2000 -

[^0]Lovewell Computations for Calendar Year:2001.,

By George Austin, 5/8/2003
Lovewell Computations for Calendar Year 2002,

Input	Calendar Year Month 2001 Dec 2002 Jan 2002 Feb 2002 Mar 2002 Apr 2002 May 2002 Jun 2002 Jul 2002 Aug 2002 Sep 2002 Oct 2002 Nov 2002 Dec	Feet EOM El. ${ }^{1}$ 1580.63 158077 158109 158.41 1582.64 158486 158258 157604 157367 1574.76 157676 1578.64	Acre-Feet Gross Evap. ${ }^{1}$		Acre-Feet CC Inflow ${ }^{1}$	Acre-Feet CC Outflow ${ }^{1}$	Acre-Feet WR Outflow ${ }^{1}$	Acre-Feet EOM CC Storage ${ }^{4}$ 	Acre-Feet EOM WR Storage ${ }^{4}$ 䨐 E 27426
${ }^{1}$ Bureau Data ${ }^{2} 1997$ Area-Capacity Tables (Corrected)									
Consumptive Use below Lovew Net Evaporation:Ássigned to R	ed to River 24							EMEC Storage 261	EOMWR Storage 25900

By George Austin, 5/8/2003

[^0]: By George Austin, 5/8/2003

