Baseflow Impact Reductions due to Shutting off Pumping at Different
Distances from Stream, Moderate Drought Conditions 2007-2046

AcreVolStrCellBuffersSummaryMOUND_OFF0746.xls
Baseflow Impact Reductions due to Eliminating
80,000
70,000
60,000
50,000

Compact Water Supply, Allocation and Consumptive Use Values

Summary_SW-GW_Table1\&2.xls

Allocation_CBCU_95-05prov.xls

Blue shade indicates values directly or derived from old accounting tables Green shade indicates raw values from model output or values from accounting spreadsheet that utilized model data

2005 is not finally adopted by the RRCA as of 1-16-2007, NFR Evap for SW CBCU for above Harlan County Lake

'81-'00	318,774	266,310	156,618	165,075	16,325	109,692	52,464	324,449	58,139
'81-'05	301,743	266,102	166,154	172,919	15,634	99,948	35,619	308,857	42,755
'81-'85	329,464	235,950	120,342	139,192	14,538	115,608	93,514	329,464	93,514
'86-'90	291,224	289,106	166,240	150,712	14,478	122,866	2,118	291,224	2,118
'91-'95	330,134	241,834	147,720	178,224	17,164	94,114	88,300	333,714	91,880
'96-'00	324,276	298,350	192,170	192,170	19,120	106,180	25,926	343,396	45,046
'01-05	233,616	265,270	204,296	204,296	12,872	60,972	$-31,762$	246,488	$-18,782$
'96-'05	278,946	281,810	198,233	198,233	15,996	83,576	$-2,918$	294,942	13,132
'99-'05	251,293	275,110	201,284	201,284	14,494	73,824	$-23,894$	265,787	$-9,323$

Compact CBCU and Allocation Values
(including Imported Water Supply Credit)

Summary_SW-GW_Table1\&2.xls

Allocation_CBCU_95-05prov.x|s

Impacts_1981-2005_plus_IWS_chart.xls
Republican Model Region Groundwater Pumping by NRD

Ground Water Depletions to Stream by NRD

Percentages of Stream Depletion from Ground Water
Pumping, 1981-2005, Republican Basin NRDs

NRD_ImpactChart1981-2005.xls

Reduction in Stream Depletion due to Eliminating Pumping in or near Stream Cells

2007-2046 Future Scenarios Precipitation

PrecipAnalysisFor0746Runs.xls

[^0]Republican Basin Stream Depletion for Moderate-Drought Conditions,
with and without Current NRD Pumping Allocations

2006-2047_BaselinelmpactSummary.xls

	Estimated Stream Depletion - Moderate Drought Conditions loc_Adj Alloc_Adj Alloc_Adj Alloc_Adj NO_Adj					Est: Reduction in Stream: Depletion from CREP/EQIP 			Est: Reduction in Stream Depletion from Current: Allocations:	
Year	NO_CREP	44,400	70,000	100,000	44,400					
2006	195,137	193,072	191,842	190,206	194,895	2,065	3,295	4,931	1,823	
2007	200,692	196,459	194,016	191,121	199,916	4,233	6,676	9,571	3,457	
2008	193,457	189,131	186,567	183,620	193,237	4,326	6,890	9,837	4,106	
2009	202,905	197,907	194,789	191,174	202,041	4,998	8,116	11,731	4,134	
2010	214,325	208,641	205,299	201,103	215,353	5,684	9,026	13,222	6,712	
2011	211,406	206,248	203,148	199,348	213,937	5,158	8,258	12,058	7,689	
2012	199,409	193,780	190,542	186,663	201,030	5,629	8,867	12,746	7,250	
2013	208,589	202,471	198,894	194,820	209,387	6,118	9,695	13,769	6,916	
2014	219,213	212,561	208,735	204,212	221,579	6,652	10,478	15,001	9,018	
2015	216,045	210,147	206,628	202,472	219,841	5,898	9,417	13,573	9,694	
2016	204,026	197,803	194,158	189,902	207,175	6,223	9,868	14,124:	9,372	
2017	213,452	206,760	202,866	198,324	215,613	6,692	10,586	15,128	8,853	
2018	223,749	216,590	212,473	207,636	227,136	7,159	11,276	16,113	10,546	
2019	220,220	213,884	210,170	205,739	224,988	6,336	10,050	14,481	11,104	
2020	208,086	201,536	197,698	193,153	212,773	6,550	10,388	14,933	11,237	
2021	217,868	210,774	206,737	201,926	221,205	7,094	11,131	15,942	10,431.	
2022	227,857	220,500	216,139	211,029.	232,222	7,357	11,718	16,828	11,722	
2023	223,986	217,453	213,584	208,922	229,713	6,533	10,402	15,064	12,260	
2024	212,134	205,324	201,200	196,501.	218,018	6,810	10,934	15,633	12,694	
2025	221,863	214,423	210,237.	205,185	226,140	7,440	11,626	16,678	11,717	
2026	231,707	224,040	219,554	214,262	236,747	7,667	12,153	17,445	12,707	
2027	227,572	220,811	216,836	212,021.	233,979	6,761	10,736	15,551	13,168	
2028	215,764	208,745	204,573	199,652	222,959	7,019	11,191	16,112	14,214	
2029	225,686	218,051.	213,678	208,496	230,799	7,635	12,008	17,190	12,748	
2030	235,523	227,480	222,873	217,477	241,076	8,043	12,650	18,046	13,596	
2031	230,834	224,082	219,907.	$214,995$.	237,943	6,752	10,927	15,839	13,861	
2032	219,059	212,094	207,941	202;791	227,607	6,965	11,118	16,268	15,513	
2033	229,253	221,508	216,930	211,689	235,487	7,745	12,323	17,564	13,979	
2034	238,872	230,912	226,207	220,614	245,079	7,960	12,665	18,258	14,167	
2035	233,948	227135	222,996	218,001.	241,831	6,813	10,952	15,947	14,696	
2036	222,284	215,305	211124	205,932	231,873	6,979	11,160	16,352	16,568	
2037	232,780	, 224,814	220,229	214,826	239,931	7,966	12,551	17,954	15,117	
2038	242,024	, 233,951.	229,312	223,656	248,957	8,073	12,712	18,368	15,006	
2039	236,703	229,952	225,906.	220;899	245,272	6,751	10,797	15,804	15,320	
2040	225,340	218,260	214,025	208,958	235,510	7,080	11,315	16,382;	17,250	
2041	235,939	227,780	223,169	217,705	243,519	8,159	12,770	18,234	15,739	
2042	244,974	236,799	232,148	226,501	252,397	8,175	12,826	18,473.	15,598	
2043	239,120	232,587	, 228,634	223,598	248,155	6,533	10,486	15,522	15,568	
2044	228,590	221,231.	-217,062	212,075	239,063	7,359	11,528	16,515	17,832	
2045	239,028	230,962	226,323	220,753.	246;917	8,066	12,705	18,275.	15,955	
2046	247,831	239,435	234,637	229,204	255;506	8,396	13,194	18,627.	16,071	

Reduction in Stream Depletion due to Eliminating

QR_ReductionsAnalysis_NRD.xIs
2007-2046 Future Scenarios Precipitation

PrecipAnalysisFor0746Runs.xls

2006-2047_BaselinelmpactSummary.xls

2006-2047_BaselinelmpactSummary.xls

2006-2047_BaselinelmpactSummary.xls

Republican Basin Reduction in Stream Depletion, 2007-2046

0746MdDrt_ImpactReductionsSummary.xls
Acre-Feet

Republican Basin Stream Depletion from GW Pumping, 2007-2046

0746MdDrt_ImpactReductionsSummary.xis
Republican Basin Stream Depletion from GW Pumping, 2007-2046 Moderate Drought 3-NRD Reduction Scenarios

Republican Basin Stream Depletion from GW Pumping, 2007-2046

0746MdDrt_ImpactReductionsSummary.xls
Republican Basin Stream Depletion from GW Pumping, 2007-2046 Moderate Drought 3-NRD Reduction Scenarios

Republican Basin Reduction in Stream Depletion, 2007-2046 Moderate Drought 3-NRD Reduction Scenarios

0746MdDrt_ImpactReductionsSummary.xis
Republican Basin Reduction in Stream Depletion, 2007-2046 Moderate Drought 3-NRD Reduction Scenarios

Republican Basin Reduction in Stream Depletion, 2007-2046

Republican Basin Reduction in Stream Depletion, 2007-2046

0746MdDrt_ImpactReductionsSummary.xls
Republican Basin Reduction in Stream Depletion, 2007-2046
Moderate Drought 3-NRD Reduction Scenarios

0746MdDrt_ImpactReductionsSummary.xls
Republican Basin Reduction in Stream Depletion, 2007-2046
Moderate Drought Lower Republican NRD Reduction Scenarios

0746MdDrt_ImpactReductionsSummary.xis
Republican Basin Reduction in Stream Depletion, 2007-2046
Moderate Drought Middle Republican NRD Reduction Scenarios

0746MdDrt_ImpactReductionsSummary.xIs
Republican Basin Reduction in Stream Depletion, 2007-2046
Moderate Drought Upper Republican NRD Reduction Scenarios

0746MdDrt_ImpactReductionsSummary.xls
Republican Basin Reduction in Stream Depletion, 2007-2046
Moderate Drought Upper Republican NRD Reduction Scenarios

0746MdDrt_ImpactReductionsSummary.xls
Acre-Feet

Moderate Drought Scenario Reduction in Stream Depletion

0746MdDrt_ImpactReductionsSummary.xls
Moderate Drought Scenario Reduction in Stream Depletion

0746MdDrt_ImpactReductionsSummary.xIs
Moderate Drought Scenario Reduction in Stream Depletion due to
20\% Pumping Reductions in the Quick-Response Area, by NRD

0746MdDrt_ImpactReductionsSummary.xls
Moderate Drought Scenario Reduction in Stream Depletion due to
50\% Pumping Reductions in the Quick-Response Area, by NRD

0746MdDrt_ImpactReductionsSummary.xls

Moderate Drought Scenario Reduction in Stream Depletion due to 100\% Pumping Reductions in the Quick-Response Area, by NRD

0746MdDrt_ImpactReductionsSummary.xls

0746MdDrt_ImpactReductionsSummary.xls

Republican Basin Reduction in Stream Depletion due to Phreatophyte Acreage Reduction in the NE Quick-Response Area

0746MdDrt_ImpactReductionsSummary.x/s

	MRNRD Stream Depletion from Ground Water Pumping - Moderate Drought Scenarios\|RED 15 RED 15											Estimated Reduction-in Stream-Depletion-MRNRD									
	Base	RED 10	RED 20	RED 50	RED 100	QR 25	QR 50	QR10	QR20	QR50	QR100	RED 10	RED 20	RED 50	RED 100			QR10	QR20	QR50	
2001	212,869																				
2002	180.438																				
2003	204,164																				
2004	213,157																				
2005	211,321																			0	
2006	193,072	193072	193072	193072	193072	193072	193072	193072	193072	193072	193072	0	0	- 0	0	0	0	271	554	1,308	2.328
2007	196,459	196185	195901	195140	194113	195486	194963	196188	195905	195151	194131	274	558	1,319	2,346	73	1,496	271	593	2,431	4,593
2008	189,131	188605	188079	186551	184276	187319	186305	188635	188138	186700	184538	526	1,052	2,580	4,855	1,812	$\begin{array}{r}2,826 \\ \hline 3654\end{array}$	496	993	2,431	4,549
2009	197,907	197203	196504	194439	191455	195551	194253	197281	196660	194837	192158	704	1,403 1	3,468	6,452	2,356	3,654	626	1,2491	3,704	6,768
2010	208,641	207740	206868	204237	200566	205756	204211	207881	207150	204937	201873	901	1,773	4,404	8,075	2,885 3,036	4,430 4,644	760	1,530	3,828	6,915
2011	206,248	205285	204310	201387	197437	203212	201604	205488	204718	202420.	199333	963	1,938	4,861	8,81	3,036	4,644	791	1,576	3,917	7,260
2012	193,780	192728	191677	188554	184065	190593	188936	192989	192204	189863	186520	1,052	2,103	5,226 5,791	- 9,7815	3,187 3,486	4,844 5,232	830	1,635	4,136	7,810
2013	202,471	201313	200198	196680	191631	198985	197239	201641	200836	198335	194661	1,158	2,273	5,791 6,480	10,840 11,936	3,486 3,831	5,232	873	1,792	4,498	8,351
2014	212,561	211299	210009	206081	200625	208730	206840	211688	210769	208063	204210	1,262 1,358	$\frac{2,552}{2,657}$	6,480	12,637	3,880	5,705	927	1,791	4.433	8,177
2015	210.147	208789	207490	203419	197510	206267	204442	209220	208356	205714	201970	1,358	2,784	6,943	12,921	3,970	5,829	900	1,794	4,433	8,284
2016	197,803	196410	195019	190860	184882	193833	191974	196903	196009	193370	189519	1,393 1,470	2,784	7,434	13,891	4,196	6,147	927	1,861	4,666	8,694
2017	206,760	205290	203801	199326	192869	202564	200613	205833	204899	202094	198066 207400	1,614	- 3,205	8,051	14,891	4,512	6,635	1,032	1,928	4,987	9,190
2019	213,884	212233	$\underline{210580}$	205726	197018	209364	207365	212910	211912	209065	192627	1,657	3,322	8,346	15,415	4,531	6,539	967	1,941	4,836	8,909
2021	210,774	209047	207342	202115	194561	206147	204033	209780	208811	205867	201558	1,727	3,432	8,659	16,213	4,627	6.741	994	1,963	4,907	9,216
2022	220,500	218636	2167531	211160	203235	215454	213242	219440	218348	215183	210837	1,864	3,747	9,340	17,265	5,046	7,258 7,077	1,060	2,152	$\frac{5,317}{5,107}$	9,638
2023	217,453	215574	213664	208035	197950	212463	210376	216413	215339	212346	208215	1,879	3,789	9,418	19,503	4,950	7,027	1,024	2,024	5,073	9,374
2024	205,324	203434	201558	195869	187780	200372	198297	204300	203300	200251	195950	1,890	3,766	9,455	17,544	5,051	7.210	1,035	2,061	5,124	9,591
2025	214,423	212494	210549	204714	196228	209372	207213	213388	212362	209299	204832	1,929	3,874	9,709	18,263	5,387	7,695	1,115	2,221	5,522	10,155
2026	224,040	221961	219898	213641	204777	218653	216345	222925	221819	218518	213885	2.079	4,142	10,363	21,473	5,306	7,485	1,068	2,183	5,340	9,598
2027	220,811	218710	216676	210448	199338	215505	213326	219743	218628	215471	211213	2,101	4.1097	10,289	19,180	5,212	7,394	1,016	2,080	5,132	9,603
2028	208,745	206696	204648	198456	189565	203533	201351	207729	206665	203613.	199142	2,049 2,088	4,091	$\frac{10,709}{}$	19,970	5,425	7.714	1,051	2,113	5,339	10,000
2029	218,051	215963	213830	207342	198081	212626	210337	217000	215938	212712	208051	2,088 $\mathbf{2 , 2 3 9}$	4,212	11,306	20,870	5,759	8,099	1,124	2,254	5,601	10,389
2030	227,480	225241	222968	216174	206610	221721	219381	226356	225226	221879	217091	2,249	4,524	11,285	23,063	5,685	7,933	1,103	2,186	5,472	9,916
2031	224,082	221840	219558	212797	201019	218397	216149	222979	221896	218610	214166 202288	2,2,194	4,436	11,179	20,719	5,569	7,810	1.040	2,111	5,305	9,806
2032	212,094	209900	207658	200915	191375	206525	204284	211054	209983	206789	211272	2,214	4,508	11,480	21,530	5,706	8,028	1,072	2,147	5,433	10,236
2033	221,508	219294	217000	210028	199978	215802	213480	220436	219361	225117	211272	2,402	4,832	12,173	22,504	6,064	8,504	1,179	2,323	5,795	10,689
2034	230,912	228510	226080	218739	208408	224848	222408	229733	2285897	225117	220223	2,329	4,790	12,068	24,408	5,898	8,245	1,051	2,158	5,524	10,150
2035	227,135	224806	222345	215067	202727	221237	218890	226084	224974	209897	205345	2,332	4,704	11,936	22,129	5,819	8,098	1,071	2,156	5,408	9,960
2036	215,305	212973	210601	203369	193176	209486	207207	214234	213149	219290	2144447	2,334	$\begin{array}{r}4,740 \\ \hline 4\end{array}$	12,165	22,890	5,904	8,267	1,095	2,194	5,524	10,367
2037	224,814	222480	220074	212649	201924	218910	216547	223719	231641	228090	223118	2,557	5,124	12,863	23,834	6,283	8,773	1,189	2,310	5,861	10,833
2038	233,951	231394	228827	221088	210117	227668	225178	232762	2277785	224423	219752	2,437	4,997	12,661	25,392	6,111	8,435	1,097	2,167	5,529	10,200
2039	229,952	227515	224955	217291	204560	223841	221517	22817195	216127	212767	$\overline{2} 08098$	2,341	4,882	12,576	23,464	6,011	8,374	1,065	2,133	5,493	10,162
2040	218,260	215919	213378	205684	194796	212249	209886	217195	225539	222211	217294	2,442	4,928	12,723	24,056	6,074	8,415	1,120	2,241	5,569	10,486
2041	227,780	225338	222852	215057	203724	221706	219365	2265588	234414	230818	225690	2,607	5,322	13,547	25,290	6,551	9,043	1,211	2,385	5,981	11,109
2042	236,799	234192	231477	223252	211509	230248	227756	235588	234414	237038	222313	2,518	5,147	13,258	26,364	6,268	8,615	1,118	2,180	5,549	10,274
2043	232,587	230069	227440	219329	206223	226319	223972	231469	230407	227038		2,597	4,989	12,966	24,420	6,025	8,368	1,018	2,109	5,365	10,072
2044	221,231	218834	216242	208265	196811	215206	212863	220213	219122	215866	21159	2,510	5,148	13,347	25,183	6,287	8,716	1,102	2,263	5,700	10,598
2045	230,962	228452	225814	217615	205779	224675	222246	229860	${ }^{228699}$	225362	228325	2,571	5,380	14,009	26,251	6,594	9,191	1,178	2,321	5,938	11,11
2046	239,435	236864	234055	225426	213184	232841	230244	238257	23714												

Moderate-Drought Conditions 2007 through 2046 Modeling Scenario

Baseline Conditions and Assumptions

This scenario was performed in November of 2006 to calculate and analyze the baseflows and impacts to baseflows resulting from groundwater pumping during 'moderate drought' conditions. Five baseline runs (no pumping reductions apart from NRD allocations) were performed using the 'moderate drought' conditions, which were all based on final heads from equivalent (same NRD-pumping allocation and CREP/EQIP program acreage reductions) 2006 preliminary runs (See '2006_PreliminaryModelRunExp.doc'):

1) With NRD pumping allocations, no CREP/EQIP program irrigated acreage reductions.
2) With NRD pumping allocations, 44,400 Acres CREP/EQIP program irrigated acreage reductions. This is the baseline scenario upon which all future reduction scenarios were built (see below). It was chosen as the baseline for reduction scenarios because it is considered to be the most realistic representation of the current, unchanged condition.
3) With NRD pumping allocations, 70,000 acres CREP/EQIP program irrigated acreage reductions.
4) With NRD pumping allocations, 100,000 acres CREP/EQIP program irrigated acreage reductions.
5) No NRD pumping allocations, 44,400 acres CREP/EQIP program irrigated acreage reductions.
The years 1988 through 1991 were selected as years with relatively low precipitation, a time frame representative of real conditions. Both five-year and four-year time periods were examined to find a dry period with a low standard deviation indicating little deviation from the dry condition (See 'PrecipAnalysisFor0746Runs.xls'). The average precipitation for the NE groundwater model region is 22.1 inches per year, and the 1988-1991 time period is characterized by an average rainfall of 20.1 inches per year with a standard deviation of only. 9 inches. The climatic conditions and resulting irrigation applications from this period were repeated for 40 years. Therefore, this four-year climate condition was repeated ten times, 20072011, 2012-2015...2043-2046.

Phreatophyte evapotranspiration and precipitation for all three states were repeated using the cycles outlined above. Nebraska surface-water, canal deliveries and groundwater-commingled pumping were repeated using the same cycle. Kansas and Colorado irrigation were also repeated using the four-year cycle.

Nebraska groundwater-exclusive (GWEX) pumping was treated differently from the other irrigation categories, as irrigated acreage in this category has increased significantly since the reference years 1988-1991. The assumption was made that GWEX acreages would remain at the 2005 levels (as was the preliminary 2006 run) for the duration of the 40 -year scenario, so 19881991 GWEX irrigated volumes were not used for the modeling scenarios. Groundwaterexclusive volumes were calculated by multiplying the specific county reference year's irrigation depth by the number of GWEX acres in each grid cell from the 2005 preliminary update. In this manner, the distribution of pumping corresponding to the precipitation pattern was preserved.

Pumping and Acreage Reduction Scenarios: Details

NRD Allocation Runs

Adjustments were made to the depths of irrigation application to account for allocations agreed upon by the Lower, Middle, and Upper Republican NRDs. Irrigation depth was capped at 13.5 inches for the Upper Republican, 13 inches for the Middle Republican, 12 inches west of the inlet to Harlan Reservoir and 11 inches east of the inlet to Harlan Reservoir in the Lower Republican NRD. The irrigation in Harlan County was capped at 11.5 inches since approximately one-half of the county has an 11 -inch allocation and the other half a 12 -inch allocation.

Runs with allocations were performed with four different levels of CREP/EQIP acreage reductions. One run was performed without NRD reductions, but with 44,400 acres of CREP/EQIP acreage reductions to compare to the principle baseline run and observe the impact reductions resulting from the current NRD allocations.

CREP/EQIP Program Acreage Reductions

Estimates of acres enrolled, and locations thereof, of CREP/EQIP program lands for the year 2006 were obtained from Jeremy Gehle of the NE Department of Natural resources. The total enrollment in these two programs for the year 2006 was estimated to be 44,400 acres, and this level was continued on through 2046 as the principle scenario upon which all reduction runs are based. For comparison purposes and to further understand potential baseflow impact reductions from acreage reductions, the model was run (as outlined above) with the four levels of CREP/EQIP program acreage reductions.

Actual locations of the lands taken out of production due to the CREP/EQIP programs was unknown; however, an approximate distribution of these lands by county was known. All reductions were applied to lands in the groundwater-exclusive (GWEX) irrigation category. These 44,400 acres, and their corresponding pumping volumes were removed from the appropriate counties to create what was assumed to be the most probable baseline scenario upon which to perform future reduction scenarios.

Since the actual distribution in each county of these acre distributions was unknown, the reductions were applied evenly to all GWEX-irrigated lands found within the quick-response areas of each county. This was performed by first calculating an acreage ratio for each county. The acreage ratio for each county was calculated as:
(\# Irrigated GWEX Acres in QR Area - \# Acres Enrolled in CREP/EQIP Programs)
\# Irrigated GWEX Acres in QR Area
These county-specific ratios were then multiplied by all the acres and volumes for each cell in the quick-response area, thereby calculating the new, reduced quick-response acres and volumes. This same method was used to prepare pumping files for all levels of CREP/EQIP reductions.

Pumping Reduction Scenarios

Several levels of reductions were applied to the baseline run with NRD allocations and 44,400 acres of CREP/EQIP reductions. The reductions fall into four categories: 1) Reductions applied to the 3-NRD region consisting of the Lower, Middle and Upper Republican NRDs ('RED' scenarios), 2) Reductions applied only to the quick-response area (' QR ' scenarios) 3) Reductions applied to the 3-NRD and QR areas simultaneously, 4) Reductions applied to the Lower, Middle, Upper and Tri-Basin NRDs. The reductions applied are as follows:

$$
\begin{gathered}
\text { RED 10\% } \\
\text { RED 20\% } \\
\text { RED } 50 \% \\
\text { RED } 100 \%
\end{gathered}
$$

RED 15\% + QR 25\% (15\% Reduction to both QR and Upland, plus 25% to just the QR area)
RED 15\% +QR 25\% (15% Reduction to both QR and Upland, plus 50% to just the QR area)

> QR 20\%
> QR 50\%
> QR 100\%

The reductions listed above were also applied to the individual NRDs.

Phreatophyte ET Control

Runs were performed to determine the reduction to baseflow impacts resulting from eliminating and controlling the return of phreatophyte vegetation located in the quick-response area. Reductions were not performed on vegetation outside of the quick response area. The total area of phreatophytes in NE, as represented by the groundwater model is 164,538 acres; 128,056 of these acres are in the quick-response area. Two levels of reductions, 10% and 20% were observed in the modeling scenarios.

Narrative for 15-50 Scenario Analysis

Discussed on December 15, 2006 McCook, Nebraska

Material Provided by
The Nebraska Department of
Natural Resources

Methods Used to Analyze the 15\% Basin Wide Plus Additional 50\% Pumping Reduction in the Quick Response Area from Ground Water Model Scenario Results

The following is a brief synopsis of the methods used to analyze the results of Scenario 15_50 in moderate drought conditions. The goal of the 15 _ 50 scenario analysis was to estimate a volume of pumpage that would result in stream flow depletions less than a selected basin target allocation. The target allocation is Nebraska's estimated one-year share of the Computed Water Supply as determined by the methods detailed in Appendix C, Accounting Procedures and Reporting Requirements (as amended), of the Final Settlement Stipulation. Table 1 located in Microsoft Excel spreadsheet "15 50Summary.xls" provides a summary of Nebraska's allocation of water from the Republican River Basin from 1995-2005. These values represent the maximum volume of net consumptive use (the sum of all consumptive uses less the sum of all credits) which would approximate a one-year water budget. Using the allocation information from this table, a Basin target allocation of 200,000 acre-feet (AF) was selected.

Once the target allocation was selected, a series of model runs from the Republican River ground water model were scrutinized. This series of runs, collectively referred to as 0746-Moderate Drought, modeled a number of different scenarios involving various rates of groundwater pumpage with assumed conditions for climate, surface water, phreatophyte evapotranspiration, and land retirement programs. A more complete description of the 0746 -Moderate Drought collection of runs can be located in the official DNR documentation document (DNR, 2006).

Table 2 provides a summary of the pumpage volumes, by Quick Response (QR) and Upland areas, assumed for each of the scenarios modeled as part of the 0746-Moderate Drought group of model runs. For each scenario, the computed beneficial consumptive use (CBCU) due to groundwater pumpage was calculated. These values (baseflow depletions) are summarized on Table 3. From this information, the pumpage volume represented in Scenario 15_50 was selected as an initial pumpage volume estimate from which to work. As shown on Table 3, Scenario 15_50 has a predicted average depletion due to groundwater pumpage from 2007-2010 of approximately 185,000 AF. With an Imported Water Supply (IWS) credit of $10,000 \mathrm{AF}$ (based on trend information inferred from Table 1) and assumed surface water CBCU of $25,000 \mathrm{AF}$, the target of $200,000 \mathrm{AF}$ could be met $(185,000-10,000+25,000=200,000)$.

The pumpage volumes shown on Table 4 are based on Scenario 15_50. The reductions represented in Scenario 15_50 are uniform percentage reductions of the pumpage volumes currently represented in the model, as discussed in the documentation (DNR, 2006). The scenario did not look at optimizing the distribution of this volume; therefore, the volumes on Table 4 were presented as a range, rather than as a fixed volume. For instance, in the process of optimizing the pumpage volumes, it may make sense to have some QR areas greater than 50% while other areas might reduce less. The actual values will be dependent upon the results of optimization. The optimizations can be identified
by considerations regarding distribution of pump volumes across political boundaries or proximity to streams, desire to maximize production in the basin or other desired policies. The focus of Scenario 15_50 was to determine the general volume of pumpage from which to optimize.

Reference:

DNR, 2006. Moderate-Drought Conditions 2007 through 2046 Modeling Scenario (0746ModDrtModelingScenarioExp.doc).

TABLE 3
SUMMARY OF DEPLETIONS FROM GROUNDWATER PUMPING FOR MODEL SCENARIO 0746-MODERATE DROUGHT RECEIVED FROM DNR ON 43 DEC 2006

			RED 20	RED 50	RED 100	$\begin{gathered} \hline \text { RED } 15 \\ \text { QR } 25 \end{gathered}$	RED 15		QR20	QR50	QR100	$\begin{gathered} \text { ET RED } \\ 10 \% \end{gathered}$	$\begin{gathered} \text { ET RED } \\ 20 \% \end{gathered}$
2001	Base 212,869	RED 10					QR 50	QR10					
2002	180,438												
2003	204,164												
2004	213,157												
2005	211,321												
2006	193,072	193,072	193,072	193,072	193,072	193,072	193,072	193,072	193,072	193,072	193,072	193,072	193,072
2007	196,459	195,172	193,792	189,530	182,761	191,806	189,016	195,294	194,040	190,157	183,983	188,085	178,677
2008	189,131	187,057	184,965	178,174	167,166	181,777	177,231	187,225	185,221	178,648	167,753	178,687	166,714
2009	197,907	195,276	192,535	183,837	167,225	188,486	182,860	195,483	192,771	184,364	168,959	186,948	174,881
2010	208,641	205,766	202,617	192,188	167,452	198,185	191,553	206,074	203,252	193,480	172,221	197,400	184,511
2011	206,248	203,104	199,884	187,334	153,124	195,371	187,656	203,659	200,779	190,422	161,131	195,546	182,825
2012	193,780	190,354	186,964	174,750	142,673	183,056	176,131	191,083	188,396	179,475	152,533	182,946	171,262
2013	202,471	198,788	195,062	180,553	143,312	190,984	182,629	199,668	196,800	186,295	155,484	192,026	180,768
2014	212,561	208,579	204,591	187,917	145,352	200,237	190,968	209,658	206,726	195,456	162,073	201,651	189,781
2015	210,147	205,999	201,782	184,105	136,464	197,490	187,338	207,227	204,291	192,856	155,946	199,600	187,659
2016	197,803	193,353	188,886	171,649	128,832	184,668	176,797	194,694	191.632	182,162	150,292	186,811	175,042
2017	206,760	202,109	197,362	178,666	130,150	193,007	184,570	203,596	200,441	189,708	154,436	196,156	184,988
2018	216,590	211,777	206,829	186,435	132,414	202,355	193,230	213,445	210,205	199,128	161,902	205,630	193,824
2019	213,884	208,980	203,950	181,797	125,648	199,492	188,958	210,724	207,540	196,496	157,063	203,356	191,565
2020	201,536	196,322	191,101	170,290	119,146	186,744	178,659	198,205	194,925	185,004	152,217	190,530	178,762
2021	210,774	205,437	199,979	177,845	120,817	195,429	187,033	207,484	204,130	193,634	156,946	200,235	189,060
2022	220,500	214,958	209,330	185,798	123,269	204,813	195,873	217,121	213,805	- 202,929	164,796	209,593	197,764
2023	217,453	211,922	206,244	180,923	117,762	201,827	192,059	214,184	210,881	200, 143	160,267	206,997	195,358
2024	205,324	199,378	193,470	169,987	112,085	189,145	181,091	201,761	198,282	188,038	155,627	194,266	182,518
2025	214,423	208,457	202,410	177,611	113,232	197,938	189,478	211,008	207,582	196,872	160,407	203,926	192,806
2026	224,040	217,921	211,746	185,704	116,287	207,236	198,424	220,603	217,086	206,233	168,356	213,188	201,550
2027	220,811	214,716	208,557	181,038	111,420	204,257	195,318	217,363	214,025	203,418	164,064	210,465	198,995
2028	208,745	202,319	195,713	170,126	106,409	191,459	183,501	205,154	201,516	190,874	159,457	197,740	186,149
2029	218,051	211,399	204,802	177,928	107,741	200,466	192,187	214,438	210,826	199,961	164,486	207,466	196,444
2030	227,480	220,903	214,096	186,260	110,607	209,771	201,081	224,009	220,450	209,326	172,662	216,757	205,261
2031	224,082	217,332	210,649	181,756	106,384	206,497	198,297	220,548	216,992	206,256	167,685	213,861	202,540
2032	212,094	205,031	197,985	170,705	101,869	193,695	185,947	208,340	204,633	193,628	162,968	201,237	189,694
2033	221,508	214,318	207,036	178,576	103,336	202,878	194,804	217,721	214,051	202,907	168,515	211,003	199,984
2034	230,912	223,788	216,482	187,063	106,171	212,243	203,827	227,284	223,705	212,331	176,431	220,320	208,876
2035	227,135	220,011	212,722	182,680	102,315	208,661	200,614	223,568	219,981	208,954	171,162	217,115	205,966
2036	215,305	207,840	200,290	171,600	98,267	196,135	188,166	211,553	207,717	196,465	166,658	204,608	193,126
2037	224,814	217,147	209,414	179,494	99,673	205,256	197,100	221,018	217,133	205,780	172,414	214,331	203,328
2038	233,951	226,467	218,726	188,005	102,464	214,625	206,154	230,397	226,638	215,241	180,682	223,467	212,191
2039	229,952	222,573	214,863	184,189	98,917	210,912	202,780	226,467	222,869	211,668	174,706	220,110	209,197
2040	218,260	210,433	202,385	172,560	95,292	198,309	190,217	214,481	210,586	199,162	169,757	207,721	196,214
2041	227,780	219,822	211,595	180,498	96,534	207,470	199,219	223,984	220,138	208,413	175,806	217,287	206,392
2042	236,799	228,972	220,894	189,031	99,401	216,866	208,293	233,277	229,587	217,960	184,349	226,468	215,225
2043	232,587	225,005	216,943	185,693	96,232	213,101	204,843	229,129	225,536	214,318	177.884	222,989	212,214
2044	221,231	213,388	204,774	173,962	93,001	200,742	192,616	217,540	213,700	201,991	172,954	210,917	199,587
2045	230,962	222,619	213,976	181,858	94,174	209,920	201,448	227,063	223,205	211,347	179,253	220,481	209,566
2046	239,435	231,503	222,862	190,118	96,878	218,970	210,364	235,918	232,284	220,579	187,683	229,215	218,158
Averages													
2007-2010	198,035	195,818	193,477	185,932	171,151	190,064	185,165	196,019	193,821	186,662	173,229	187.780	176,196
2011-2014	203,765	200,206	196,625	182,639	146,115	192,412	184,346	201,017	198,175	187,912	157,805	193,042	181,159
2014-2046	219,809	213,357	206,741	180,360	110,562	202,503	193,977	216,332	212,821	201,795	166,967	209,257	197,872

Z.

 Я

 5.

 5ư

 -

Estimated Percent of Yearly Impacts from Past Pumping, 2001-2006

Lag0106_YrByYrSummary_.xls

Excerpts from the Final Settlement Stipulation Regarding Stream Augmentation

III. Existing Development

B. Exceptions to Moratorium on New Wells

1. The Moratorium shall not apply to the following:
k. Wells acquired or constructed by a State for the sole purpose of offsetting stream depletions in order to comply with its Compact Allocations. Provided that, such Wells shall not cause any new net depletion to stream flow either annually or long-term. The determination of net depletions from these Wells will be computed by the RRCA Groundwater Model and included in the State's Computed Beneficial Consumptive Use. Augmentation plans and related accounting procedures submitted under this Subsection III.B.1.k. shall be approved by the RRCA prior to implementation.

IV. Compact Accounting

A. The States will determine Virgin Water Supply, Computed Water Supply, Allocations, Imported Water Supply Credit, augmentation credit and Computed Beneficial Consumptive Use based on a methodology set forth in the RRCA Accounting Procedures, attached hereto as Appendix C.
H. Augmentation credit, as further described in Subsection III.B.1.k., shall be calculated in accordance with the RRCA Accounting Procedures and by using the RRCA Groundwater Model.

LR 389
 Interim Study Hearing
 Natural Resources Committee

May 16, 2006 Holdrege, Nebraska

Material Provided by the Nebraska Department of

Natural Resources

Applicable Provisions in the Republican River Compact Settlement Agreement

Article II Definitions

Imported Water Supply Credit: The accretions to stream flow due to water mporits
 Imported Water Supply Credit of a State shall not be included in the Virgin Water Supply and shall be counted as a credit/offset against the Computed Beneficial Consumptive use of that State's Allocation, except as provided in Subsection V.B.2. of this Stipulation and Subsections III.I.-J. of the RRCA Accounting Procedures;

Article V.B.2.b. Nebraska Action in Water-Short Year Administraion

b. Nebraska may offset any Computed Beneficial Consumptive Use in excess of its Allocation that is derived from sources above Guide Rock with Imported Water Supply Credit. If Nebraska chooses to exercise its option to offset with Imported Water Supply Credit, Nebraska will receive credit only for Imported Water Supply that: (1) produces water above Harlan county Lake; (2) produces water below Harlan County Lake and above Guide Rock that can be diverted during the Bostwick irrigation season; (3) produces water that can be stored and is needed to fill Lovewell Reservoir; or (4) Kansas and Nebraska will explore crediting water that is otherwise useable by Kansas.

Article III.B.1.k. Exception to Moratorium on New Wells

The moratorium [on new wells] shall not apply to the following:
k. Wells acquired or constructed by a State for the sole purpose of offsetting stream depletions in order to comply with its Compact Allocations. Provided
 Ghunalyorlong tegn. The determination of net depletions from these Wells will be computed by the RRCA Groundwater Model and included in the State's Computed Beneficial Consumptive Use. Augmentation plans and related accounting procedures submitted under this Subsection III.B.1.k. 5hal be

Interbasin Transfer Statutes for Surface Water

46-206. Appropriation; water to be returned to stream. The water appropriated from a river or stream shall not be turned or permitted to run into the waters or channel of any other river or stream than that from which it is taken or appropriated, unless such stream exceeds in width one hundred feet, in which event

Source: Laws 1889 , c. $68, \S 6$, p. 504 ; Laws 1893 , c. 40 , § 3, p. 378, R.S.1913, § 3376; Laws 1919, c. 190, tit. VII, art. V, div. 1, §8, p. 832 .S.1922, § 8413 C.S.1929, § 46-508 R.S.1943, § 46-206; Laws 1981, LB 252, § 2.

46-288. Interbasin transfers; terms, defined. For purposes of this section and section 46-289, unless the context otherwise requires:
(1) Basin of origin shall mean the river basin in which the point or proposed point of diversion of water is located;
(2) Beneficial use shall include, but not be limited to, reasonable and efficient use of water for domestic, municipal, agricultural, industrial, commercial, power production, subirrigation, fish and wildlife, ground water recharge, interstate compact, water quality maintenance, or recreational purposes. Nothing in this subdivision shall be construed to affect the preferences for use of surface water as provided in section 46-204;
(3) Interbasin transfer shall mean the diversion of water in one river basin and the transportation of such water to another river basin for storage or utilization for a beneficial use; and
(4) River basin shall mean any of the following natural hydrologic basins of the state as shown on maps located in the Department of Natural Resources: (a) the White River and Hat Creek basin; (b) the Niobrara River basin; (c) the Platte River basin, including the North Platte and South Platte River basins, except that for purposes of transfer between the North and South Platte River basins each shall be considered a separate river basin; (d) the Loup River basin; (e) the Elkhorn River basin; (f) the Republican River basin; (g) the Little Blue River basin; (h) the Big Blue River basin; (i) the Nemaha River basin; and (j) the Missouri tributaries basin.

Source: Laws 1981, LB 252, § 5; Laws 1993, LB 789, § 3; Laws 2000, LB 900, § 129.

46-289. Legislative findings; interbasin transfers; application for water; factors considered; order issued. The Legislature finds, recognizes, and declares that the transfer of water to outside the boundaries of a river basin may have impacts on the water and other resources in the basin and that such impacts differ from those caused by uses of water within the same basin in part because any unused water will not be returned to the stream from which it is taken for further use in that river basin. The Legislature therefor recognizes the need to delineate factors for consideration by the Director of Natural Resources when evaluating an application made pursuant to section 46-233 which involves an interbasin transfer of water hawamilicinteces Those considerations shall include, but not be limited to, the following factors:
(1) The economic, environmental, and other benefits of the proposed interbasin transfer and use;
(2) Any adverse impacts of the proposed interbasin transfer and use;
(3) Any current beneficial uses being made of the unappropriated water in the basin of origin;
(4) Any reasonably foreseeable future beneficial uses of the water in the basin of origin;
(5) The economic, environmental, and other benefits of leaving the water in the basin of origin for current or future beneficial uses;
(6) Alternative sources of water supply available to the applicant; and
(7) Alternative sources of water available to the basin of origin for future beneficial uses.

[^1]
Surface Water Rught Transfer Statute

46-294. Applications; approval; requirements; conditions; burden of proof. (1) Except for applications approved in accordance with subsection (1) of section 46-291, He Ditecto of Natura1 Resources shal kaprowe an application Tfed pursuant to secton 46200 ony f the applicationand lie proposed transfet on ghange neet the dolowing requirments:
(a) The application is complete and all other information requested pursuant to section 46-293 has been provided;
(b) The proposed use of water after the transfer or change will be a beneficial use of water;
 basin as defined in section $46-288$ or (it the wher basin fron wheh the
 apprepration is to be transferred;
(d) Except as otherwise provided in subsection (4) of this section, the proposed transfer or change, alone or when combined with any new or increased use of any other source of water at the original location or within the same irrigation district, reclamation district, public power and irrigation district, or mutual irrigation or canal company for the original or other purposes, will not diminish the supply of water available for or otherwise adversely affect any other water appropriator and will not significantly adversely affect any riparian water user who files an objection in writing pursuant to section 46-291;
(e) The quantity of water that is transferred for diversion or other use at the new location will not exceed the historic consumptive use under the appropriation or portion thereof being transferred, except that this subdivision does not apply to a transfer in the location of use if both the current use and the proposed use are for irrigation, the number of acres to be irrigated will not increase after the transfer, and the location of the diversion from the stream will not change;
(f) The appropriation, prior to the transfer or change, is not subject to termination or cancellation pursuant to sections 46-229 to 46-229.04;
(g) If a proposed transfer or change is of an appropriation that has been used for irrigation and is in the name of an irrigation district, reclamation district, public power and irrigation district, or mutual irrigation or canal company or is dependent upon any such district's or company's facilities for water delivery, such district or company has approved the transfer or change;
(h) If the proposed transfer or change is of a storage-use appropriation and if the owner of that appropriation is different from the owner of the associated
storage appropriation, the owner of the storage appropriation has approved the transfer or change;
(i) If the proposed transfer or change is to be permanent, either (i) the purpose for which the water is to be used before the transfer or change is in the same preference category established by section 46-204 as the purpose for which the water is to be used after the transfer or change or (ii) the purpose for which the water is to be used before the transfer or change and the purpose for which the water is to be used after the transfer or change are both purposes for which no preferences are established by section 46-204;
(j) If the proposed transfer or change is to be temporary, it will be for a duration of no less than one year and, except as provided in section 46-294.02, no more than thirty years;
(k) The transfer or change will not be inconsistent with any applicable state or federal law and will not jeopardize the state's compliance with any applicable interstate water compact or decree or cause difficulty in fulfilling the provisions of any other formal state contract or agreement; and
(l) The proposed transfer or change is in the public interest. The director's considerations relative to the public interest shall include, but not be limited to, (i) the economic, social, and environmental impacts of the proposed transfer or change and (ii) whether and under what conditions other sources of water are available for the uses to be made of the appropriation after the proposed transfer or change. The Department of Natural Resources shall adopt and promulgate rules and regulations to govern the director's determination of whether a proposed transfer or change is in the public interest.

(a) the burden is on a riparian user to demonstrate his or her riparian status and to demonstrate a significant adverse effect on his or her use in order to prevent approval of an application and (b) if both the current use and the proposed use after a transfer are for irrigation, the number of acres to be irrigated will not increase after the transfer, and the location of the diversion from the stream will not change, there is a rebuttable presumption that the transfer will be consistent with subdivision (1)(d) of this section.
(3) In approving an application, the director may impose any reasonable conditions deemed necessary to protect the public interest, to ensure consistency with any of the other criteria in subsection (1) of this section, or to provide the department with information needed to properly and efficiently administer the appropriation while the transfer or change remains in effect. If necessary to prevent diminution of supply for any other appropriator, the conditions imposed by the director shall require that historic return flows be maintained or replaced in
quantity, timing, and location. After approval of any such transfer or change, the appropriation shall be subject to all water use restrictions and requirements in effect at any new location of use and, if applicable, at any new diversion location. An appropriation for which a transfer or change has been approved shall retain the same priority date as that of the original appropriation. If an approved transfer or change is temporary, the location of use, purpose of use, or type of appropriation shall revert to the location of use, purpose of use, or type of appropriation prior to the transfer or change.
(4) In approving an application for a transfer, the director may also authorize the overlying of water appropriations on the same lands, except that if any such overlying of appropriations would result in either the authorized diversion rate or the authorized aggregate annual quantity that could be diverted to be greater than is otherwise permitted by section 46-231, the director shall limit the total diversion rate or aggregate annual quantity for the appropriations overlain to the rate or quantity that he or she determines is necessary, in the exercise of good husbandry, for the production of crops on the land involved. The director may also authorize a greater number of acres to be irrigated if the amount and rate of water approved under the original appropriation is not increased by the change of location. An increase in the number of acres to be irrigated shall be approved only if (a) such an increase will not diminish the supply of water available to or otherwise adversely affect another water appropriator or (b) the transfer would not adversely affect the water supply for any river basin, subbasin, or reach that has been designated as overappropriated pursuant to section 46-713 or determined to be fully appropriated pursuant to section 46-714 and (i) the number of acres authorized under the appropriation when originally approved has not been increased previously, (ii) the increase in the number of acres irrigated will not exceed five percent of the number of acres being irrigated under the permit before the proposed transfer or a total of ten acres, whichever acreage is less, and (iii) all the use will be either on the quarter section to which the appropriation was appurtenant before the transfer or on an adjacent quarter section.

Source: Laws 1983, LB 21, § 6; Laws 1984, LB 818, § 2; Laws 1993, LB 789, § 4; Laws 2000, LB 900, § 135; Laws 2004, LB 962, § 20.

Applicable Groundwater Transfer/Transport Statutes

Interstate Transfer of Groundwater

46-613.01. Ground water; transfer to another state; permit; Department of Natural Resources; conditions. The Legislature recognizes and declares that the maintenance of an adequate source of ground water within this state is essential to the social stability of the state and the health, safety, and welfare of its citizens and that reasonable restrictions on the transportation of ground water from this state are a proper exercise of the police powers of the state. The need for such restrictions, which protect the health, safety, and general welfare of the citizens of this state, is hereby declared a matter of legislative determination.

Any person, firm, city, village, municipal corporation, or other entity intending to withdraw ground water from any water well located in the State of Nebraska and transport it for use in another state shall apply to the Department of Natural Resources for a permit to do so. In determining whether to grant or deny such permit, the Director of Natural Resources shall consider:
(1) The nature of the proposed use and whether it is a beneficial use of ground water;
(2) The availability to the applicant of alternative sources of surface or ground water;
(3) Any negative effect of the proposed withdrawal on ground water supplies needed to meet present or reasonable future demands for water in the area of the proposed withdrawal, to comply with any interstate compact or decree, or to fulfill the provisions of any other formal state contract or agreement;
(4) Any negative effect of the proposed withdrawal on surface water supplies needed to meet present or reasonable future demands within the state, to comply with any interstate compact or decree, or to fulfill the provisions of any other formal state contract or agreement;
(5) Any adverse environmental effect of the proposed withdrawal or transportation of ground water;
(6) The cumulative effect of the proposed withdrawal and transfer relative to the matters listed in subdivisions (3) through (6) of this section when considered in conjunction with all other transfers subject to this section; and
(7) Any other factors consistent with the purposes of this section that the director deems relevant to protect the health, safety, and welfare of the state and its citizens.

Issuance of a permit shall be conditioned on the applicant's compliance with the rules and regulations of the natural resources district from which the water is to be withdrawn. The applicant shall be required to provide access to his or her property at reasonable times for purposes of inspection by officials of the district or the department.

The director may include such reasonable conditions on the proposed use as he or she deems necessary to carry out the purposes of this section.

Source: Laws 1967, c. 281, § 5, p. 761; Laws 1969, c. 9, § 69, p. 144; Laws 1984, LB 1060, § 1; Laws 1993, LB 131, § 11; Laws 2000, LB 900, § 174; Laws 2003, LB 619, § 7.

Agricultural Transfer of Groundwater

46-691. Transfer off overlying land; when allowed; objection; procedure; natural resources district; powers and duties; Director of Natural Resources; duties. (1) Any person who withdraws ground water for agricultural purposes, or for any purpose pursuant to a ground water remediation plan as required under the Environmental Protection Act, including the providing of water for domestic purposes, from aquifers located within the State of Nebraska may transfer the use of the ground water off the overlying land if the ground water is put to a reasonable and beneficial use within the State of Nebraska and is used for an agricultural purpose, or for any purpose pursuant to a ground water remediation plan as required under the Environmental Protection Act, including the providing of water for domestic purposes, after transfer, and if such withdrawal, transfer, and
 Withal Whplicable statuts and rules anderegulatons, and (c) iis in the public interest. The determination made by a natural resources district under subsection (2) of this section or the Director of Natural Resources under subsection (3) of this section shall include consideration of the factors set forth in subdivisions (1) through (7) of section 46-613.01. For purposes of this section, domestic has the same meaning as in section 46-613.
(2) Any affected party may object to the transfer of ground water by filing written objections, specifically stating the grounds for such objection, in the office of the natural resources district containing the land from which the ground water is withdrawn. Upon the filing of such objections or on its own initiative, the natural resources district shall conduct a preliminary investigation to determine if the
withdrawal, transfer, and use of ground water is consistent with the requirements of subsection (1) of this section. Following the preliminary investigation, if the district has reason to believe that the withdrawal, transfer, or use may not comply with any rule or regulation of the district, it may utilize its authority under the Nebraska Ground Water Management and Protection Act to prohibit such withdrawal, transfer, or use. If the district has reason to believe that the withdrawal, transfer, and use is consistent with all rules and regulations of the district but may not comply with one or more other requirements of subsection (1) of this section, the district shall request that the Department of Natural Resources hold a hearing on such transfer.
(3) At the hearing, all interested persons may appear and present testimony. Agencies or political subdivisions of this state and the appropriate natural resources districts shall offer as evidence any information in their possession which

(4) The director may adopt and promulgate rules and regulations to carry out this section.

Source: Laws 1995, LB 251, § 1; Laws 2000, LB 900, § 223; Laws 2003, LB 619, § 14.

Cross References

Environmental Protection Act, see section 81-1532.
Nebraska Ground Water Management and Protection Act, see section 46-701.

NRD Approval of Transfers to a Stay or Moratorium Area

46-742. Transport of ground water; prohibited; when. 1 WHenciovit Whe drling of new well has beenstayd pursuan to section 46 F 14 , staund wate Whthrawioutside the affected area hall not be fransported for use inside such

(2) Whenever a natural resources district pursuant to subdivision (1)(m) of section 46-739 has closed all or part of the district to the issuance of additional well permits, ground water withdrawn outside the affected area shall not be transported for use inside such area unless (a) such withdrawal and transport began before the affected area was closed to the issuance of additional well permits, (b) the water is used solely for domestic purposes, or (c) such withdrawal and transport is approved in advance by the district that closed the affected area to additional well permits and, if the water is withdrawn in another natural resources district, by the other district.
(3) If a proposed withdrawal and transport of water under subsection (1) or (2) of this section is intended for municipal purposes, the natural resources district shall approve the withdrawal and transport of ground water into the affected area when a public water supplier providing water for municipal purposes receives a permit from the Department of Natural Resources pursuant to the Municipal and Rural Domestic Ground Water Transfers Permit Act.

Source: Laws 2003, LB 619, § 11; R.S.Supp.,2003, § 46-656.24; Laws 2004, LB 962, § 82.

Cross Reference

Municipal and Rural Domestic Ground Water Transfers Permit Act, see section 46-650.

General NRD Authority to Approve and Regulate Physical Transfers of Ground Water and Transfers of Rights to Use Ground Water

46-739. Management area; controls authorized; procedure.
(1) A district in which a management area has been designated shall by order adopt one or more of the following controls for the management area:
(1) It may require district approval of (i) tansfers of ground water off the land where the water is withrawn or (i) transfers of hghts to use ground water that result from distict allocations imposed pursuant to subdivision () (a) of this Section or from other testrictions on use that are imposed by the district In accordance with this section. Such approval may be required whether the transfer is within the management area, from inside to outside the management area, or from outside to inside the management area, except that transfers for which permits have been obtained from the Department of Natural Resources prior to July 16, 2004, or pursuant to the Municipal and Rural Domestic Ground Water Transfers

Permit Act shall not be subject to district approval pursuant to this subdivision. If the district adopts rules and regulations pursuant to this subdivision, such regulations shall require that the district deny or condition the approval of any such transfer when and to the extent such action is necessary to (A) ensure the consistency of the transfer with the purpose or purposes for which the management area was designated, (B) prevent adverse effects on other ground water users or on surface water appropriators, (C) prevent adverse effects on the state's ability to comply with an interstate compact or decree or to fulfill the provisions of any other formal state contract or agreement, and (D) otherwise protect the public interest and prevent detriment to the public welfare.

Note: There are several other Nebraska statutes relating to transfer of ground water that are not included here because they are less likely to be applicable. Those are:

- Municipal and rural domestic transfers- Sections 46-638 through 46-650
- Industrial transfers of ground water - Sections 46-675 through 46-690
- Small capacity domestic transfers - Sections 46-691.01 and 46-691.02
- Transfers for environmental or recreational purposes - Section 46-691.03

Excerpt from Nebraska New Depletion Plan for the Platte River Recovery Implementation Program

Beginning on January 1, 2006, the responsibility for implementing this plan will be shared between the state and the NRDs involved. To the extent that new uses of groundwater require permits from NRDs (presently includes all new wells with pumping capacities greater than 50 gpm), the following new and expanded groundwater uses begun on or after January 1, 2006 fhicluding any for which the puppse s to merease the water supply in arwer basin other than the Plate kive Basin will not be allowed unless the adverse effects of those uses on stateprotected flows and on target flows will be offset: uses that (a) are located within the North Platte, South Platte or the Platte River watershed in Nebraska and (b) are so located and constructed that if water were intentionally withdrawn for 40 years, the cumulative stream depletion to the North Platte, the South Platte, the Platte River or a base flow tributary thereto upstream of Chapman, NE would be greater than or equal to 28% of the total groundwater consumed as a result of the withdrawals from those wells. The relative responsibilities for providing offsets for uses that are initiated will vary depending on the nature of the use and the extent to which it causes new depletions to state-protected flows and/or to target flows. For new or expanded uses of groundwater that are not subject to the Federal Depletions Plan, are within the geographic area described in (a) and (b) above, but do not require permits from NRDs (e.g. less than 50 gpm wells), the cumulative impact of all such uses and of any offsetting decreases in uses of the same type will be estimated and the adverse net effects on state-protected flows and on target flows will be offset by the state.

To the extent that the Department of Natural Resources (DNR) has jurisdiction over new uses of surface water (presently includes all diversions from natural streams except those for instream livestock watering and all on-stream storage reservoirs greater than 15AF), new uses to be begun on or after January 1, 2006 (meluding any for which the purpose is to therease the water supply in any. Iver basin other than the Platte River Basin) will not be allowed by the department unless any adverse effects on state-protected flows and target flows are either prevented or are offset. The extent to which the new surface water appropriator or the state is responsible for the offset will depend on the nature of the use and the extent to which it causes new depletions to stateprotected flows and/or to target flows. For new or expanded sandpits and other surface water bodies that do not require permits from DNR (e.g. some new reservoirs with less than 15 AF storage
capacity), the cumulative impact of all such uses will be estimated and adverse effects on state-protected flows and on target flows will be estimated and will be offset by the state. Nebraska has not permitted any new surface water storage reservoirs in the Platte River Basin upstream of the confluence of the Platte River with the Loup River since July 1, 1997 and currently has a moratorium on the issuance of any new surface water appropriations in that area. If that moratorium were to be lifted or modified during the term of the Program, the ESA compliance coverage provided for new surface water storage reservoirs through implementation of the Program (including this depletions plan) will include compliance coverage for (1) the depletions to target flows that are caused by all such Nebraska reservoirs constructed after that date, regardless of storage capacity; (2) the impacts to FWS peak flows that are caused by Program-approved reservoirs, regardless of storage capacity, that are implemented after that date in accordance with the Water Action Plan; and (3) as long as the storage capacities of all other Nebraska reservoirs constructed or permitted for construction in that part of the basin after Program initiation do not collectively exceed 10,000 acre feet, the impacts to FWS peak flows that are caused by any such other reservoir. Any need to mitigate separately for adverse peak flow impacts caused by a new Nebraska reservoir that is subject to ESA Section 7 consultation (other than a reservoir that is to be implemented in accordance with the Water Action Plan) after that collective storage capacity has been exceeded shall be determined during that Section 7 consultation.

Protection of Water Once Added to the Receiving Basin

46-252. Conducting of water into or along natural channels; withdrawal; permit, when required; liability. (1) Any person may conduct, either from outside the

 purposes of instream beneficial uses or withdrawal of some or all of such water for out-of-stream beneficial uses, at any point without regard to any prior appropriation of water from such stream, due allowance being made for losses in transit to be determined by the Department of Natural Resources. The department shall monitor movement of the water by measurements or other means and shall be responsible for assuring that such quantities are not subsequently diverted or withdrawn by others unless they are authorized to do so by the person conducting the water.
(2) Except as provided in subsections (3) and (4) of this section, before any person may conduct water into or along any of the natural streams or channels of the state, he or she shall first obtain a permit from the department. Application for the permit shall be made on forms provided by the department. Applications shall include plans and specifications detailing the intended times, amounts, and streamreach locations and such other information as required by the department. The water subject to such a permit shall be deemed appropriated for the use specified in the permit. Permitholders shall be liable for any damages resulting from the overflow of such stream or channel when water so conducted contributed to such overflow.
(3) Any person actually engaged in the construction or operation of any water power plant may, without filing with the department and upon payment of all damages, use any such stream or channel for a tailrace or canal and may, whenever necessary, widen, deepen, or straighten the bed of any such stream. All damages resulting therefrom shall be determined in the manner set forth in sections 76-704 to 76-724.
(4) Any person holding a storage use permit pursuant to section $46-242$ shall not be required to obtain the permit required by this section.
(5) Nothing in this section shall be construed to exempt a person from obtaining any other permits required by law.

Source: Laws 1919, c. 190, tit. VII, art. V, div. 3, § 8, p. 848; C.S.1922, § 8458; C.S.1929, § 46-608; R.S.1943, § 46-252; Laws 1951, c. 101, § 94, p. 488; Laws 1955, c. 183, § 4, p. 516; Laws 1992, LB 49, § 1; Laws 2000, LB 900, § 118.

Update of Figure 3 - Map Showing Sub-basins, Streams, and the Basin Boundaries rocedures and Reporting Requirements January 12, 2005

RRCA
Compact Accounting

Table 2: Original Compact Virgin Water Supply and Allocations
Virgin Basin Supply Colorado Allocation \% of Basin Supply Kansas Allocation $\%$ of Basin Supply Nebraska Allocation $\%$ of Basin Supply Unallocated \% of Basin Supply North Fork 44,700 10,000 22.4% 11,000 24.6% 23,700 Arikaree 19,610 15,400 78.5% 1,000 5.1% 3,300 16.8% -90 Buffalo 7,890 2,600 33.0% 5,290 Rock 11,000 4,400 40.0% 6,600 South Fork 57,200 25,400 44.4% 23,000 40.2% 800 1.4% 8,000 Frenchman 98,500 52,800 53.6% 45,700 Driftwood 7,300 500 6.9% 1,200 16.4% 5,600 Red Willow 21,900 4,200 19.2% 17,700 Medicine 50,800 4,600 9.1% 46,200 Beaver 16,500 3,300 20.0% 6,400 38.8% 6,700 40.6% 100 Sappa 21,400 8,800 41.1% 8,800 41.1% $3,80.8 \%$ Prairie Dog 27,600 12,600 45.7% 2,100 7.6% 12,900 Tributaries Sub-Total 384,000 Main Stem 94,500 Main Stem + Unallocated 270,000 138,000 51.1% 132,000 48.9% Total 478,900 54,100 190,300 234,500 175,500

RRCA AccountingFor2005 w NFR evap above HC.xls

Nebraska Republican Basin Precipitation, 1950-2006

Pumpage and Ground Water Irrigated Acres by NRD

Water Short Year Reduction by NRD Percentage Based on Percentage Depletion 1998-2002

URNRD	MRNRD	LRNRD	Total
44%	30%	26%	100%
Acre Feet	Acre Feet	Acre Feet	Acre Feet
8,800	6,000	5,200	20,000
11,000	7,500	6,500	25,000
13,200	9,000	7,800	30,000
17,600	12,000	10,400	40,000

200
2.564,500 -admin

Ann Bleed

From: Jim Schneider [jschneider@dnr.ne.gov]
It: Friday, February 23, 2007 9:13 AM
To: ableed@dnr.ne.gov; 'Mike Thompson'; Paul Koester
Subject: RE: Allocation spreadsheet
Ann,

After 5 years we get this savings in the Rep. Basin from:
CREP \quad 7500 acft
Allocations ~ 7250 acft
Possible savings from correction going to meter pumping ~2,000-3,000 acft
Out average shortfall from last 4 years $\quad \sim 28,000$
Remainder needed to make up at five years $\quad \sim 10,000$ to 11000 acft
Mike offered to help if you need anything else.
Jim
James C. Schneider
Senior Groundwater Modeler
Nebraska Department of Natural Resources
3. entennial Mall South
4^{4}, , wor State Office Building
Lincoln, NE 68509-4676
(402) 471-3141 (office)
(402) 471-2900 (fax)
ischneider@dnr.ne.gov
From: Ann Bleed [mailto:ableed@dnr.ne.gov]
Sent: Thursday, February 22, 2007 5:18 AM
To: Jim Schneider
Subject: Re: Allocation spreadsheet
Thanks Jim
-----Original Message-----
From: "Jim Schneider" jschneider@dnr.ne.gov
To: ableed@dnr.ne.gov, "'Brad Edgerton'" bedgerton@dnr.ne.gov, "'Jim Williams'" jwilliams@dnr.ne.gov, "'Mike Thompson'" mthompson@dnr.ne.gov, "'Pam Andersen'" pandersen@dnr.ne.gov, "'TinaKurtz'"
tkurtz@dnr.ne.gov
Date: Wed, 21 Feb 2007 15:49:22-0600
Subject: Allocation spreadsheet
Here's the final spreadsheet.
Jaines C. Schneider
Senior Groundwater Modeler
Nebraska Department of Natural Resources
If Frenchman Valley took all natural flows and their portion of the storage water they would have approximately 4.0 in .
Releasing storage water would reduce the evap. By approximately 2500 AF based on the numbers for the past two years.
Estimated shut off elevation for 2007 is 1928.86. 13,159 AF needed before any irrigation supply can be realized. Approximatly 3,300 acres are senior to April 4,1946 which is the
priority date for most of the Canals priority date for most of the Canals

$$
\begin{array}{lll}
\text { Estimated } & \text { Total } & \\
\text { in. per } & \text { Natural } & \text { Inches } \mathbf{X}
\end{array}
$$

$$
\begin{aligned}
& 9 \\
& 0 \\
& \frac{0}{0} \\
& \frac{0}{0} \\
& \frac{0}{2} \\
& \frac{0}{6} \\
& \frac{1}{4}
\end{aligned}
$$

$1,161.5$
$1,489.4$

$2005 \mathrm{CBCU}=1453.8 \mathrm{AF}$
$2005 \mathrm{CBCU}=1257.6 \mathrm{AF}$

0000

$\stackrel{\square}{\square}$
Natural
Flow
and
Storage
0
0
0
0
0

正

$3,600.0$
$1,500.0$
$2,100.0$
000
080
880
0.0
N Estimated Estimated

\circ
-B
N
-

0.8
8.8
8

0	0
0	0
8	8
8	0
0	0
0	0
N	0

$\begin{array}{ll}0 & 0 \\ 8 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$
0
응 0.000000

Note: 1998 to 2002 average consumtive use for all surface water is $97,824 \mathrm{AF} .2005$ consumtive use of surface water was 41,800 . Surface water has reduced its 1998-2002 average by 57% for 2005!

Republican River Basin Canals					
District	Canal	Storage Source	Natural Flow Source	Communities effected	$\begin{aligned} & \hline \text { Permitted } \\ & \text { Acres } \end{aligned}$
Pioneer Irrigation District	Haigler Canal	None	North Fork Republican River	Haigler	1899.6
Frenchman Valley Irrigation District	Culbertson Canal	Enders Reservoir	Frenchman Creek	Culbertson	9292.4
H and RW Irrigation District		Enders Reservoir			
	Culbertson extension Can	Enders Reservoir	Frenchman Creek	Culbertson, McCook	11915
Riverside Irrigation Company	Riverside Canal	None	Frenchman Creek	Culbertson	672.1
Frenchman Cambridge Irrigation District	Meeker-Driftwood Canal	Swanson Reservoir	Republican River	Trenton, Culbertson, McCook	16854.8
Frenchman Cambridge Irrigation District	Red Willow Canal	Hugh Butler Reservoir	Red Willow Creek	Indianola, Bartley, Cambridge	4797.3
Frenchman Cambridge Irrigation District	Bartley Canal	Swanson and Hugh Butler Reservoirs	Republican River	Bartley, Cambridge	6353
Frenchman Cambridge Irrigation District	Cambridge Canal	Harry Strunk, Hugh Butler, Swanson Reservoirs	Republican River	Cambridge, Holbrook, Arapahoe, Edison, Oxford, Orleans and Alma	17663.9
Bostwick Irrigation District	Naponee Canal	Harlan County Reservoir	Republican River	Naponee, Bloomington, Franklin	1650
Bostwick Irrigation District	Franklin Canal	Harlan County Reservoir	Republican River	Naponee, Bloomington, Franklin, Riverton, Red Cloud	10920
Bostwick Irrigation District	Franklin Pump Canal	Harlan County Reservoir	Republican River	Franklin, Riverton	2090
Bostwick Irrigation District	Superior Canal	Harlan County Reservoir	Republican River	Guide Rock, Superior	5840
Bostwick Irrigation District	Courtland Canal	Harlan County Reservoir	Republican River	Guide Rock, Superior	1946
				Total	91894.1

0¢s＇962	ع6か＇ご！	020 +81	08s＇962	0 Ot＇LL	089＇E®	0	$026^{\prime} 162$	016＇LZ	0＜8＇6Z	002＇6bs	00ぐャレも	1 라이
							0sL＇l6t	028＇002	0	0Z1＇乙6£		pateooㅆㄹun Guppriju｜ wers uiew
0¢S＇962	86ゅうで！	0z0＇t8レ	08s＇962	OEャtLL	$08 \mathrm{~S}^{\prime} \varepsilon \varepsilon$	$0 \angle 9<91$	$086^{*} 602$	0\＆て＇でャ	0 ${ }^{\prime} 8^{\prime} 63$	002＇6bs	O02＇b1b	！seg liv lefol
06SE91．	8t0ャ6	で¢699	06S＇E91	00L＇LS	0ヶでが	0	091＇601	069＇ャレ	0	09\％「てくて	Oss＇611	Wens uiew
02	99	0	02	06て＇6	0	$008^{\circ} \mathrm{L}$	OLZ＇	$079^{\prime} L$	0	014＇91		600 aplyes
0011	LOE	262	0015	009－	0	Otャ＇	$0 \downarrow$ ¢＇$¢$	$0 \triangleright \varepsilon^{\prime} \varepsilon$	0	021＇8	021＇8	eddes
OLSE	0	8998	$02 S^{\prime} \varepsilon$	09S＇t	0	09	$086^{\circ} \mathrm{E}$	09L＇${ }^{\circ}$	0ヶ6＇1	$0699^{\circ} 6$	$069{ }^{6}$	ләлеәв
0 0セ¢	1 ¢	06051	0 0ヶt＇S！	0	0	08E＇を \dagger	Oャع＇จ	0	0	OZL＇くヤ	028＇8¢	อupupaw
0892	968	0829	089\％	0	0	011＇zz	OGZ＇S	0	0	098＇く2	098＇乙z	MOIIIM Pey
OGIL	0	EStI	OSI＇	0	0	088	061	08	0	OSI＇t	OS1＇t	роомпрй
0scre	1 －88．	七2282	0ss＇16	0	009	008＇G9	09b＇t9	0	0	092＇021	09でจト1	uewuruely
086	0	Z86	086	$0 \varepsilon \varepsilon^{\prime \prime} 9$	0tL＇81	0 ¢ $\underbrace{\prime} \downarrow$		0ごで	0こL＇E1	00660	000＇92	40 S 4 mos
OEIE	0	GZ1E	$0 \varepsilon 1^{\prime} \varepsilon$	0	0 T	OLZ＇S	OLS＇E	0	0	08L＇8	08L＇8	YOOH
0LE\＆	296	こし62	$0 \angle \varepsilon^{\prime} \varepsilon$	0	082	0 06 $6^{\circ} \mathrm{E}$	$086{ }^{\prime}$＇	0	0	098＇G	098＇S	Oifeing
002	0	961	002	0 OL	$026{ }^{1}$	$0 \varepsilon^{-}$	066	008	$029 \times$	088＇G	088＇9	аอлех！়
012t	ESSE	9911．	012＇t	02	062＇91	001＇ZZ	089＇01	0	$06 \mathrm{~S}^{\prime \prime} 6$	0こ8＇टt	028＇z	YOOJ 4
19\％01	MS	MS	eyseiqan	Sesuex	opeapos	pejesolirun	eisedajan	sesuex	орелоро万	hiddns	Klddns	ulseg
n9903n	กว9ว JN	กว9○ ヨ		03 1ep！	pojnduos		suo！	OIlv		derem	JojeM	0002

pajesoneun
Bu！pnju！

ECBCUIT
-80000000000 252,690

0
0
0
2
0
0
0
2
0
0
0
2

Basin	Supply	Supply	Colorado	Kansas	Nebraska	Unallocated	Colorado	Kansas
North	Nebraska							

250
3510 250
3510
$\therefore 3830$
1370 우웅罟 $8 \mathbb{D}_{\mathbf{N}}^{\infty}$尔 790
40
118530 118530
253,740 No No $_{0}$ LSS
$\angle 6 \$$
2 34476
42,854 $210,879 \quad 42,854 \quad 253,740$
 280,643
252,650 82,015
39,530

 $\begin{array}{cc}0 & 0 \\ \underset{\sim}{\circ} & \text { N } \\ 0 & \infty \\ 0\end{array}$
 00 $\begin{array}{lllll}504,046 & 520,673 & 29,432 & 214,453 & 276,788 \\ 331,080 & 360,260 & 21,420 & 136,280 & 198,940\end{array}$ Average
Min

DNR MEMO

Date: February 26, 2007

TO: Ann Bleed

From: Brad Edgerton

Subject: 2006 Surface Water Summary

In 2006 the State of Nebraska compensated Bostwick Irrigation District, Frenchman Valley Irrigation District and Riverside Irrigation Company to forgo irrigation. These lease agreements were done to assist the state of Nebraska with their Republican River s Compliance efforts.

Frenchman Valley Irrigation District's natural flow appropriation has a priority date of May 16,1890 and can divert 130.86 cfs from the Frenchman Creek at their headgate located just north of Palisade Nebraska; 9,292 acres can be irrigated with this appropriation via Culbertson Canal. These acres can also be served with storage water from Enders Reservoir when water is available.

In 2006 Frenchman Valley irrigation district leased to the State approximately 6,400 acre-feet of natural flow that was available at their headgate. Frenchman Valley Irrigation district was paid $\$ 400,000$ and agreed not to irrigate with surface water in 2006 .

The benefit to the state was a reduction in computed beneficial consumptive use of approximately 2,000 acre-feet and an increase of 4,400 to Nebraska's computed water supply recorded at the Compact gage located on Frenchman Creek near Culbertson Nebraska. The total net benefit to the State was 6,800 acre-feet at a cost of approximately $\$ 59.00$ per acre-foot. (\%200/AF Bevefd. $\$ 400 \mathrm{AFBU}$ ai $\$ 91.00 / G F$ Beveft
Riverside irrigation Company is located on Frenchman Creek approximately 3 miles above the Compact gage. They have 4 natural flow appropriations with the oldest priority date of December 19, 1893; the total amount that can be diverted is 9.60 cfs and can irrigate 672 acres. Their average total volume diverted the past 5 years has been approximately 2000 acre-feet.

In 2006 Riverside was paid $\$ 100,000$ ($\$ 50,000$ was provided by MRNRD) to forgo irrigation during 2006. The benefit to the state was a reduction in computed beneficial consumptive use of approximately 800 acre-feet and an increase of 15 acre-feet to Nebraska's computed water supply recorded at the Compact gage located on Frenchman Creek near Culbertson Nebraska. The total net benefit to the state was $2320 \% / 600$ acre-feet at a cost of approximately $\$ 43.00$ per acre-foot.

Nebraska Bostwick Irrigation District has both natural flow and storage use appropriations for 22,454 acres located between Harlan County Reservoir and Hardy Nebraska. Approximately 50% of the irrigation supply in Harlan County Reservoir each year can be applied to these acres.

In 2006 Nebraska Bostwick agreed to forgo irrigation and allow Kansas Bostwick Irrigation District the right to use Nebraska's portion of its storage water, which was 10,118 acre-feet. In addition to the storage water Nebraska Bostwick agreed not to divert the natural flow available at the headgate of Superior canal which was estimated at 5,000 acre-feet.

The benefit to the State was a reduction in computed beneficial consumptive use of approximately 6750 acre-feet and an increase of 3900 acre-feet to Nebraska's computed water supply recorded at the Compact gage located at Guide Rock. An additional reduction in computed beneficial consumptive use of approximately 10,000 acre-feet was realized for Nebraska when Kansas took 100% of the storage water evaporation from Harlan County Reservoir. (Kansas may dispute the evan split) The total net benefit to the State was 20,650 acre-feet at a cost of approximately $\$ 121.00$ per acre-foot.

In summary, a total of $\$ 3,000,000$ was paid for an approximate net benefit to the Republican River compact accounting of 29,770 acre-feet at a rate of $\$ 101$ per acre-foot.

Bureau project lands under permit with the State of Nebraska total 89330 acres. In 2006 an average of $\$ 15.00$ per acres was collected by the irrigation districts for each permitted acre for $O \& M$. An addition per acre fee was collected under Cambridge Canal and Bartley Canal of $\$ 2.50$ per acre-inch for approximately 8 inches.

The benefit to Kansas was approximately 10,600 acre-feet delivered to 5,925 acres located above Lovewell Reservoir for an estimated 6 inches per acre applied.
A/C this yean in irrigation pool
Bureau willcelpas H S,
Fnliow H.C. N/S 10,000 AF possibly 20,000 AF

[^0]: 2006-2047_BaselinelmpactSummary.xis

[^1]:

 an application shall specify the reasons for such action, including a discussion of the required factors for consideration, and shall document such decision by reference to the hearing record, if any, and to any other sources used by the director in making the decision.

 Source: Laws 1981, LB 252, § 6; Laws 1986, LB 309, § 2; Laws 2000, LB 900, § 130.

